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ABSTRACT 

Atomic-level understanding of the structural transformations of multimetallic 

nanoparticles (NPs) triggered by external stimuli is of vital importance to the 

enhancement of our capabilities to precisely fine-tailor the key structural parameters and 

thereby to fine-tune the catalytic properties of the NPs. In this work, I firstly show that 

Au-Cu bimetallic NPs demonstrate stoichiometry-dependent architectural evolutions 

during chemical dealloying processes and nanoporosity-evolving percolation dealloying 

only occurs for Au-Cu alloy NPs with Cu atomic fractions above the parting limit. The 

electrochemically active surface area and the specific activity of the dealloyed 

nanoframes can be systematically tuned to achieve the optimal electrocatalytic activity. 

Both the stability and the activity of the dealloyed Au nanoframes could be remarkably 

enhanced by incorporation of residual Ag into Au nanoframes through percolation 

dealloying of Au-Ag-Cu ternary alloy NPs. In addition, the catalytic selectivity of 

dealloyed porous Au NPs could be realized by precise control over of the surface atomic 

coordination numbers through percolation dealloying of Au-Cu bimetallic alloys with 

interior compositional gradients. Besides, nanoscale galvanic replacement reaction 

induced structural evolutions of Au-Cu bimetallic NPs has also been investigated in this 

dissertation. I have demonstrated the compositional stoichiometry and the structural 

ordering function as two key factors dictating the resulting architectures. More 

sophisticated and intriguing nanostructures have been achieved by coupling galvanic 

replacement with percolation dealloying or co-reduction. The electrocatalytic activity and 
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the stability of the resulting NPs with controllable geometries have been pushed to a new 

level. Lastly, I extend the investigation to Au-Ni system with huge lattice mismatch. The 

success in geometry-controlled syntheses of a series of Au-Ni bimetallic 

heteronanostructures represents a significant step toward the extension of nanoscale 

interfacial heteroepitaxy to the ones exhibiting large lattice mismatches and even 

dissimilar crystalline structures.  

In summary, the goal of this dissertation is to gain new insights on structural 

transformations of multimetallic NPs which serve as a central design principle that guides 

the development of synthetic approaches to controllably fabricate architecturally 

sophisticated and compositionally diverse multimetallic nanostructures and build the 

structure-composition-property relationships and eventually optimize their performances. 
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The current increasing interest in Au catalysis could be dated back to the 1980s when it 

was first reported that oxides supported-nanosized Au particles showed unexpected 

highly catalytic activity toward low-temperature carbon monoxide (CO) oxidation, which 

is strikingly contrast to the well-known traditional chemically inert bulk Au.
1,2

 Since then, 

extensive research enthusiasm has been devoted in studying and understanding catalytic 

mechanisms of Au catalysis followed by sequentially considerable debate and 

controversy regarding to intrinsic reactivity of Au catalysts.
3-6

 During the past decades, it 

has been consistently showed that only the ultrasmall Au less than 5 nm nanoparticles 

deposited on high-surface-area supports exhibit highly catalytic activity. It thus has 

become increasingly evident that undercoordinated surface atoms located on the edges, 

which become highly abundant when the nanoparticles are in sub-5 nm size regime, serve 

as the primary active sites for catalyzing a series of interfacial chemical and 

electrochemical reactions.
7-11

 However, this inference remains a limited understanding 

about the origin of catalytic activity especially when the convoluted intertwining effects 

among nanoparticles, surfactants, and supports are taken into considerations for the 

catalytic promotion.
12

 

Support-free nanoporous Au materials like Au bulk foams
13

 open a unique opportunity 

and provide an ideal platform to explore the intrinsic catalytic activity of Au catalysis, 

which have been found to display similar even remarkably enhanced catalytic activities 

as supported- ultrasmall Au nanoparticles, although they have much larger characteristic 

lengths far beyond 5 nm both in ligament and pore diameters.
14,15

 More importantly, 

support-free nanoporous Au, which successfully avoid issues associated with 

nanoparticle aggregation and support detachment of small catalytically active Au 
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nanoclusters, demonstrates promising advantages of excellent conductivity, highly 

thermal stability, large surface area, tunable composition, and a high density of various 

types of undercoordinated surface active atoms that might provide favorable reactive sites 

for specific reactions, all of which are highly desired for an optimal catalyst.  Recently, 

research interesting in Au catalysis have been extended from macroscopic Au foam to 

nanoparticulate porous Au catalysts due to their striking distinct features of in terms of 

architectural uniformity, structural diversity and tunability, compositional flexibility, and 

easy material processing. Such remarkably advanced architectural accessibility enables us 

to precisely tailor the physical and chemical properties, then build up structure-

composition-activity relationship, and eventually aim to catalytic optimization of porous 

Au nanocatalysts. In this review, we discuss the mechanistic formation of nanoporous Au 

and the explanation of their intrinsic reactivity toward a couple of representative chemical 

and electrochemical reactions. We highly focus on the current progress and especially 

potential strategies to overcome the challenges in precisely geometric and compositional 

control of nanoparticulate porous Au structures. More importantly, through systematic 

bottom-to-up studies, we provide a quantitative understanding of structure-composition-

property relationships underpinning the catalytic behaviors of porous Au nanocatalysts 

and propose a series of approaches toward optimization of their catalytic activity, 

durability, and selectivity from a specific perspective. 

1.1 Fabrication of Nanoporous Au Foam 

The percolation dealloying of multimetallic alloy materials, entangling the selective 

dissolution of electrochemically more active metals accompanied with atomic migration 

and structural rearrangements of more-noble components in the bulk and at the solid-
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electrolyte interfaces, provides a unique and versatile pathway to introduce nanoscale 

porosity into bulk system. Various of nanoporous metallic Au materials have commonly 

been obtained through percolation dealloying of Au-containing multimetallic alloy 

materials, such as Au-Cu,
16

 Au-Ag,
17

 Au-Sn,
18

 and ternary Au-Ag-Pt or Au-Pt-Cu 

alloys.
19,20

 A prototypical system of particular interest has been the percolation dealloying 

of bulk Au-Ag alloy membranes,
14,17,21

 which evolve into sponge-like porous 

architectures with unique three-dimensional (3D) bicontinuous solid/void structures 

comprising Au-rich nanoligaments by exposure the alloy to a corrosive environment such 

as concentrated nitric acid. According to a surface-diffusion continuum model developed 

by Erlebacher and co-workers,
17

 as kinetic Monte Carlo simulations illustrated in Figure 

1.1A,
22

 the percolation dealloying of Au-Ag alloy is initiated upon the dissolution of a 

single Ag atom on the flat surface, leaving behind a terrace vacancy coordinated with 

fewer Ag atoms that are more susceptible to dissolution. As the entire terrace is stripped, 

the undercoordinated Au atoms left behind undergo rapid surface diffusion and migration 

to agglomerate into Au-rich islands. Therefore, the surface of the alloy upon initiation of 

dealloying is composed of Au-rich domains that locally passivate the surface and patches 

of un-dealloyed material still exposed to the electrolyte. As dealloying further proceeds, 

the interfacial dissolution of Ag atoms and coarsening of the Au-rich domains continues, 

leading to formation of pit and porosity and eventual evolving into bicontinuous spongy 

structures. Figure 1.1B shows the scanning electron micrograph (SEM) of a typical 

dealloyed nanoporous Au film fabricated by selective dissolution of Ag by immersing 

Au-Ag alloy in nitric acid under free corrosion conditions. This model demonstrates the 

nanoporosity-evolving in metals is a consequence of an intrinsic dynamical pattern 
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formation process, which is well supported by the result of theoretical simulation of alloy 

dissolution (Figure 1.1C). The entire nanoporosity evolution dealloying process occurs on 

multi-scales, involving the kinetics of dissolution, surface diffusion, and mass transport 

through the bulk of both alloy and electrolyte. Erlebacher’s model also suggests Au-Ag 

alloys exhibit bulk-composition-dependent dealloying dynamic behaviors of Ag 

dissolution. As the both experimental and simulated polarization curves shown in the 

Figures 1.1D-1.1F for the Au-Ag alloy films of different stoicheomitries, the Ag 

dissolution current drastically increased once a critical potential was reached, and the 

critical potential gradually increased with the Au content increase. A successful 

percolation dealloying for making porous metallic materials is essentially dictated by two 

parameters: the parting limit and the critical potential,
23,24

 both of which are strongly 

dependent on the compositional stoichiometry of the starting alloy systems. Percolation 

dealloying occurs only when the content of less-noble element is higher than a threshold 

value known as the parting limit. In Ag-Au alloys, this parting limit was measured to be 

∼55 at % Ag,
17

 while the critical potential is the electrochemical parameter signifying the 

onset of percolation dealloying, that is, the transition from a ‘‘passivated’’ alloy surface 

to a bicontinuous porous structure.
23

 In addition, the dealloyed porous structures are 

actually composed of Au-rich nanoligaments with residual less-noble content left over 

because it is impossible to completely remove all the less-noble components, and the 

residues might remain alloyed with Au and homogeneously distributed in the ligaments, 

or locally segregate around the atomic steps and kinks on the topmost surface atomic 

layer,
25

 while the accurate distribution is still a challenge. These dealloyed nanoligament-

composed porous Au film exhibits of an unusual bicontinuous porous network with large 
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specific surface areas, open surface structures, and high density of surface active sites. 

Furthermore, the feature size including both ligament and pore dimensions could be fine-

tailored by controlling the surface diffusion kinetics namely the ligament coarsening 

which is closely related the starting alloy composition, and dealloying conditions, as well 

as following treatment. For instance, Ding et al. demonstrated the characteristic length 

scale of the ligament could be well controlled over a wide range from a few to hundreds 

of nanometers by annealing treatment at various elevated temperatures,
26

 whereas a low-

temperature dealloying technique was developed by Chen et al. to generate an ultrafine 

nanoporous Au structure with thinner nanoligament and small pore size because the 

interfacial diffusion of Au atoms was significantly sluggish under low temperatures.
27

 

Metallic corrosion in electrochemical systems has also been widely investigated, in 

particular the selective dissolution (an etching process also called dealloying) of less-

noble elements under applied anodic potentials.
28

 Various electrochemical treatments like 

potential cycling method, constant-potential electrolysis method, differential normal 

pulse voltammetry, and linear voltammetry sweep,
29,31,3230

 have been successfully utilized 

to fabricate porous Au by dealloying of Au-Zn or Au-Ag alloys. The final porous Au 

with controllable three dimension porosity could be able to achieve by tuning the starting 

alloy composition, dealloying temperature, and electrochemical parameters. Recently, 

some other electrochemical techniques like the anodization of pure Au in oxalate-

containing solutions  or direct Au deposition with hydrogen bubble as dynamic template 

have been constructed to engineering pure porous Au architectures,
33,34

 which greatly 

facilitate the investigation of Au reactivity. The size and structure of the final porous 

foams can be modified significantly by applying different deposition conditions, such as 
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the electrolyte composition, deposition potential, and deposition time.
35

  

 

Figure 1.1. (A) Kinetic Monte Carlo simulations of atomic-scale dealloying processes during 

percolation dissolution. Reprinted with permission from reference 22.
22

 Copyright 2018 Materials 

Research Society. (B) SEM of nanoporous Au made by percolation dealloying of Au24Ag76 alloy 

film. (C) Simulated porous Au structure with ligament widths of 2±5 nm. (D) Current-potential 

behavior for varying Ag-Au alloy compositions (at % Au) dealloyed in 0.1M HClO4 + 0.1M 

Ag
+
(reference electrode 0.1 M Ag

+
/Ag). (E) Simulated current-potential behavior of Ag-Au 

alloys. (F) Comparison of experimental (line) and simulated (triangles) critical potentials; the 

zero of overpotential has been set equal to the onset of dissolution of pure silver both in 

simulation and in experiment. Reprinted with permission from reference 17.
17

Copyright 2001 

Springer Nature. 

 

1.2 Reactivity of Nanoporous Au Foam 

A complete overview of a series of important oxidation and hydrogenation reactions on 

support-free nanoporous Au foam has been summarized by Wittstock et al.
9
 A systematic 
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understanding of the catalytic properties of nanoporous Au is highly desirable, especially 

for the determination of active sites. In this review, we highlight two major factors that 

most studied including undercoordinated surface atoms and residual less-noble elements 

in dictating the intrinsic activity of nanoporous Au catalysts. 

1.2.1 Undercoordinated Surface Atoms  

The catalytic activity of unsupported nanoporous Au has been more extensively 

investigated since it was first reported by Zielasek et al. and shortly after by Ding et 

al.
36,37

  They have demonstrated that nanoporous Au is highly active for CO oxidation 

even at lower temperatures without any activation pretreatment, and also displays 

outstanding durability that is in strikingly contrast to traditional oxide- supported Au 

nanocatalyst which requires preactivation by exposure to H2 or O2 at elevated 

temperatures.
38

 Since then, rapid progress has been made in understanding the natural 

reactivity of nanoporous Au catalysts toward a variety of chemical or electrochemical 

reactions. It is has long been suggested that the reactivity of nanoporous Au originates 

from the high density of undercoordinated atoms present on the curved ligament 

surfaces.
11,39,40

 On the basis of their degree of coordination and geometric characteristic, 

surface atoms of nanoporous Au can be sorted by three types including terrace atoms, 

step edge atoms, and kink sites, in the order of coordination decreasing (Figure 1.2A), 

and the latter two is in particular critical for catalysis due to their extremely high fraction 

of low-coordination.
11

 While no direct evidences showing the presence of such step or 

kink sites on the curved nanoligament surface, SEM characterization clearly showed two-

dimensionally curved surfaces that must contain a high concentration of step edge and 

kink site surface atoms. In addition, the fraction of low coordinations increases as the 
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ligament thickness decreases, which is similar with metallic Au nanocatalysts that 

become catalytically active as the surface atomic coordination number reduced.
41

 Until 

very recent, direct verification of the presence of undercoordicated atoms has proven on 

basis of high resolution transmission electron microscopy. It has been clearly observed 

from high-angle annular dark-field scanning electron microscopy (HAADF-STEM) 

images that the locally curved surfaces of nanoporous Au are essentially enclosed by high 

densities of various types of undercoordinated Au atoms at steps and kinks (Figure 1.2B) 

which serve as the active sites providing higher binding energy sites for efficient CO 

adsorption on basis of experimental results as well as theoretical studies.
25

 Furthermore, 

the activity deterioration of nanoporous Au film for electrocatalytic methanol oxidation 

in liquid phase caused by nanoligaments coarsening which seriously resulted in the 

vanishing of active undercoordinated atoms after long-time potential cycling indirectly 

confirmed the reactivity from the surface undercoordinations.
42

 Consistent with this 

observation, some recent investigations have also demonstrated that the catalytic activity 

of nanoporous Au for CO oxidation in gas phase decreased with the nanoligament 

coarsening and loss of low-coordination sites associated with the surface atomic 

migration and segregation as a consequence of thermal treatment as the reaction 

prolonged, while the catalytic performance could be well maintained by introduction of a 

tiny amount of Pt (or Ag) on the nanoporus Au surface, surface defects, or surface 

coating that efficiently suppressed the surface atomic migrations or rearrangements, 

which provided strong evidences for the key role of undercoordinations in catalytic 

activity of nanoporous Au catalysts. 
43,44
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Figure 1.2. (A) Schemes illustrating of terrace, step edge, and kink site atoms with various 

undercoordinations generated during percolation dealloying. (B) HAADF-STEM images of four 

different sites from an individual Au nanoligament. Reprinted with permission from ref 25,
25

 

Copyright 2012 Springer Nature. (C) Adsorption energies of O2, (D) the activation barrier for O2 

dissociation, and (E) the energy of dissociative adsorption (with respect to gas-phase O2) as a 

function of the number of Ag substituents in the unit cell. Red and black lines indicate systems 

with and without co-adsorbed O, respectively. Transition state structures with co-adsorbed O are 

schematically depicted. Reprinted with permission from ref 45,
45

 Copyright 2015 American 

Chemical Society. 

 

However, it remains difficult to make a definitive conclusion that the presence of 

undercoordinated Au atoms is the exclusive reason for the remarkably active property of 

nanoporous Au catalysts. On the contrary, it is found that Au(211) surfaces of a typical 

step-terrace structure with high density of steps exhibit plain reactivity toward CO 

oxidation although showing strong CO chemisorption property which is an critical 

promotion factor for the reaction.
46

 Besides, Friend et al. recently illustrated that even 
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extended Au (111) with oxygen atoms were seeded on the surface exhibited catalytic 

performance for selective oxidation of olefins, further indication the surface 

undercoordinated atoms were not the sole reason for active property of nanoporous-Au 

47,4849
. Another study recently reported by Tao and co-workers shows that the nanoporous 

Au pretreated by ozone and then methanol which usually viewed as an efficient treatment 

for elimination of low coordination demonstrates highly active for selective oxidation of 

cyclohexene.
50

 All these investigations suggest a more complex correlation of surface 

structure but not only surface atomic undercoordinations of nanoporous Au with its 

corresponding catalytic performance toward specific chemical reactions.  

1.2.2 Residual Elements 

As we mentioned in the section of nanoporous Au fabrication, it is well known that the 

less-noble elements could not be completely removed through percolation dealloying. It 

is later found that the contribution of residues such as Ag or Cu to the reactivity of 

nanoporous Au catalysis cannot be ignored. The earlier studies have demonstrated the 

critical role of Ag in boosting the catalytic activity of Au powders as well as Ag content-

dependent activity of Au-Ag alloy toward CO oxidation because the Ag atoms probably 

provide specific sites for the dissociation of O2 (oxygen activation) which is essential for 

oxide reactions.
51

 While the content of the residual metal is low to 1 at %, it can enrich 

(segregate) at the surface and promote the molecular oxygen activation and thus improve 

the reactivity of nanoporous Au especially for oxidation reactions. This inference is well 

supported by the observation that the residual Ag provides more active sites for 

dissociative O2 adsorption and greatly modifies the reactivity of the porous Au towards 

CO catalytic oxidation.
25

 The promoting role of Ag is also confirmed by the recent study 
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showing an increase in the binding energy of molecular oxygen on Au surfaces by 

introducing Ag atoms in the surface region,
52

 which is further verified by the theoretical 

analysis of the Au(321) model surface revealing the substituting surface Au atoms with 

Ag significantly reduce the O2 dissociation barrier and can hence facilitate O2 activation 

(Figure1.2C).
45

 Besides, the residual Cu also has been reported to function as the similar 

role in enhancing the catalytic activity of porous Au membrane.
16

 

More importantly, the selectivity as well as the overall durability of dealloyed 

nanoporous Au could also be dramatically improved by introduction of residual less-

noble metals into Au matrix. The experiments conducted by Wittstock and co-workers 

showed methanol could be selectively oxidized into methyl formate and CO2 on 

nanoporous Au samples with the same morphology but different amounts of residual Ag. 

A high Ag content (10 at %) facilitated the complete methanol combustion, while a low 

concentration (1 at %) promoted the partial oxidation product methyl formate.
14

 In 

addition, Erlebacher and co-workers suggested small amounts of Pt added to the bulk of 

Ag-Au alloy membranes could accumulate around the surface atomic step edges to 

stabilize the undercoordinated atoms during percolation dealloying.
19

 The reactivity of 

nanoporous Au modified by the residual Ag probably resulted from a local change of the 

d-band structure of Au due to the incorporation of residual metal into Au matrix or 

oxygen dissociation on Ag patches which then deliver the oxygen to the Au. The Ag 

distribution obviously has a profound influence on the catalytic mechanism,
36

 whereas 

the present format of Ag on the nanoporous Au surface, pure Ag islands or intermixture 

with Au is difficult to accurately figure out, which might closely relate to the catalytic 

selectivity of nanoporous Au. For instance, Tao et al. recently presented nanoporous Au 
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with a Au-Ag alloy surface facilitated the formation of cyclohexene oxide during 

cyclohexene oxidation, while silver oxide surface could oxidize cyclohexene into 

cyclohexenyl hydroperoxide.
50

 Similarly, Bäumer et al. also suggested that catalytic 

activity of nanoporous Au was likely dependent on the distribution and chemical state of 

surface Ag while undergoing different reaction mediums,
53

 although their early study 

claimed there was no direct correlation between the catalytic activity and Ag amount at 

the nanoporous surface for CO oxidation at low temperature range.
36

 Whereas it must 

emphasize that the pure np-Au made by electrochemical method that does not contain 

any residual Ag or other promoting elements like Cu demonstrated outstanding electro-

oxidation activities,
54

 indicating the synergistic effect but not the essential role of 

residues in reactivity of porous Au catalysis. The functions of residual less-noble metals 

in dealloyed nanoporous Au catalyst is a complex issue, various factors including the 

content, the distribution, and the chemical state, as well as the synergetic effects between 

each other, should be seriously taken into account to elucidate the effect of residual 

promotion elements.  

1.2.3 Others  

While it remains a controversial field about the intrinsic reactivity of nanoporous Au, it’s 

worth to point out  the origin of the catalytic activity and the active state surface of 

nanoporous Au catalysts also closely relate to the specific reactions and the surrounding 

reaction medium as well. For example, the nanoporous Au catalyst that is highly reactive 

for selective oxidative coupling of methanol showing no active for CO oxidation under 

standard operation conditions, although both reactions critically depend on O2 

activation.
47

 In addition to the residual less noble metals, the Au-based nanoporous 
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materials containing un-leachable noble metals have also been of great interest due to 

their enhanced electrocatalytic performances and stability in electrochemical reactions 

compared with the monometallic nanoporous metals as a consequence of the alloy 

effect.
55

 It is found that the catalytic activities of the nanoporous Au catalysts also 

showed strong dependence on the atomic ratio of Au and impure metal leftover such as 

Ag and Pd. For instance, Chen et al. demonstrated that the nanoporous PdAu catalyst 

with an optimal composition of Au25Pd75 possessed superior activity toward ethanol 

oxidation.
56

  Generally, it is a case to case definition of the reactivity of nanoporous Au 

strongly dependent on the specific reaction, reaction environment, surface structures, et al.  

1.3 Architectural Control of Porous Au Nanocatalyst 

Very recently, Au catalysis has been further extended from dealloyed macroscopic 

membranes to particulate porous nanoarchitectures because dealloyed spongy 

nanoparticles exhibit a unique set of advantages in terms of catalytic performance, 

materials processing, reproducibility, and architectural tunability. First, a unique open 

system of a porous nanoparticle greatly promotes the accessibility for the catalytically 

active sites by the reactant molecules and a confined inside space allows easy diffusive 

fluxes of products, while both reactants and products must overcome long diffusion 

distances and convoluted paths to reach and escape from the actively reaction sites 

covered inside of a macroscopic nanoporous membrane. In that case, the product 

molecules might be concentrated within a shallow region near the outer surface of the 

nanoporous Au foam, leaving the majority of the material unused. Additionally, the 

natural structural heterogeneity due to significant difference in pore and ligament 

dimensions from the outer surface to the interior region of a bulk Au porous foam, gives 



www.manaraa.com

15 

 

a rise to more complicated overall kinetics of the surface-catalyzed molecular 

transformations. These issues could be overcome by switching from bulk materials to 

nanoparticles which possess uniform ligament thickness and pore size as well as easily 

accessible 3D open surface structure. Second, colloidal nanoparticles can be made into an 

easily processable ink, which provides feasibility for direct assembly particles on a large 

variety of electrode substrates. Such convenient materials processing opens up great 

opportunities of colloidal porous nanoparticles for constructing high-performance but 

low-cost electrocatalysts in a wide range of applications such as electrolyzers and fuel 

cells. Lastly but most importantly, nanoparticulate alloy particles may undergo 

substantially more complex structural transformations in comparison to their macroscopic 

bulk counterparts exposure a planar surface to electrolyte during dealloying process. 

Therefore, architectural diversity and tunability of alloy nanoparticles offers a unique 

strategy to fine-tailor a series of geometric and compositional parameters and eventually 

fine-tune the catalytic properties of the dealloyed porous nanostructures at a level of 

precision and versatility that is unachievable on those dealloyed bulk materials. A 

diversity of porous nanoparticles with precisely controlled architectures such as a sponge-

like particle with hierarchical nanoporosity
57,58

 and a skeletal nanoframe covered by a 

noble metal skin
59,60

 have been effectively achieved through percolation dealloying under 

appropriative conditions. The controllable introduction of porosity into metallic 

nanoparticles gives rise to promising properties and performances of the dealloyed 

porous nanoparticles. It has been shown that the dealloying-induced skeletal Pt3Ni 

nanoframes with uniform hollow interior and well-defined open structures achieved a 

factor of 36 enhancement in mass activity in comparison to state-of-the-art Pt/C catalysts 
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toward oxygen oxidation reaction (ORR).
59

 The spongy-like Pt nanoparticles by selective 

leaching Cu from PtCu3 alloy nanoparticles exhibited drastically enhanced catalytic 

activity and durability for ORR as a consequence of the large electrochemical surface 

area and surface-to-volume ratio.
61

 Nanoporous gold disks as surface-enhanced Raman 

scattering (SERS) substrate demonstrates a higher enhancement factor than that of 

nanoporous Au films.
62

 In this section, we mainly highlight the current work on 

architectural control as well as structure-composition-property relationships underpinning 

the catalytic behaviors of the dealloyed porous Au nanoparticles as catalysts. The key 

thermodynamic, kinetic, and geometric factors dictating the structural evolution of 

multimetallic alloy nanoparticles during nanoporosity-evolving percolation dealloying 

have been discussed in details. The future challenges and outlooks on the structural 

control and catalytic optimization have also been touched.  

1.3.1 Percolation Dealloyig 

Similar but more complicated nanoporisity-evolving procedure relative to bulk alloy 

materials. It has been found the percolation dealloying of nanoscale alloy particles 

strongly depends on not only compositional stoichiometry, but also on particle size, 

crystalline structures, intraparticle compositional gradients of the starting alloy 

nanostructures, and dealloying condition as well. For example, Au-Ag nanoparticles with 

size larger than 10 nm evolved into nanospongies analogous to the behavior observed for 

the corresponding bulk alloy, while their sub-10 nm counterparts transformed into core-

shell nanoparticles under identical dealloying conditions. Therefore, alloy nanoparticles 

beyond ∼10 nm in size typically undergo dealloying-induced structural transformations 

analogous to those of their bulk counterparts with the same compositions. It is well 
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known that the nanoporosity evolution during percolation dealloying is synergistically 

dictated by two interplaying processes, pore expansion and ligament coarsening. For an 

alloy nanoparticle, the pore expansion is caused by the faster outward migration of less-

noble metals than the inward migration of Au atoms in the alloy matrix, which is known 

as Kirkendall effect,
63

 leading to increased overall particle size and pore volume during 

the nanoporisity evolving process. Ligament coarsening, on the other hand, results in 

thickening of the nanoligaments, decrease of overall particles size, and rearrangement of 

undercoordinated surface atoms into thermodynamically more stable close-packed 

configurations. One can speculate that a precise control over the nanoporosity evolution 

process and final architectural structures of dealloyed nanoparticles could be achieved by 

well balance of these two key factors. While independent kinetic control of these two 

processes remains a huge challenge because of their strong synergistic effect, the rates of 

ligament coarsening and pore expansion are both intimately tied to the leaching rate of 

less noble element, which can be rigorously maneuvered through choosing appropriate 

condition under which dealloying occurs. The redox potential and the concentration of 

the etchant as well as the dealloying temperature are all crucial factors determining the 

leaching rate of less noble metal. Our recent experimental observation shows the 

ligament thickness and pore volume as well as compositional stoichiometry could be 

systematically tuned through kinetically control of Cu leaching rate by exposure of Au-

Cu binary alloy nanospheres to different etchants because the dealloying ends up with 

different thermodynamic equilibrium points determined by the natural standard redox 

potential of the etchant.
64

 It has also demonstrated the partially dealloyed porous 

nanoparticle with different pore sizes, ligament thicknesses, and Au/Cu stoichiometries 
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could be kinetically trapped by separating the particles from the etchants.  

Furthermore, incorporating a third element into a binary alloy nanoparticle provides 

another effective strategy to tune the final structures of the dealloyed nanoparticles during 

the nanoporosity-evolving dealloying process by modifying the atomic diffusion rate, 

which can be dated back to early 1990s. Addition of a small concentration of arsenic into 

Cu-Zn brasses effectively suppressed the dealloying due to the pinning of mobile Cu 

atomic step edges by surface-segregated arsenic.
65

 Similarly, the recent relevant 

investigations have also found that tiny amount of Pt incorporation could segregate 

around the surface atomic step edges against ligament coarsening and significantly 

improved the stability of nanoporous Au membranes.
19,66

 We also successfully generated 

the spongy Au nanoparticles with thinner nanoligaments and small pore sizes by 

percolation dealloying of Au-Ag-Cu ternary alloy nanoparticles.
67

 Although it is hard to 

determine the exact location of the residual Ag atoms, as an outcome, it is clear to 

observe that the presence of Ag drastically accelerated the Cu leaching and led to much 

thinner nanoligaments with high surface-to-volume ratio of the final porous product in 

comparison with those of the dealloyed particles from Au-Cu binary alloy without Ag. 

Besides, a positive potential above the critical potential coupling with chemical etching 

might also could be applied to drive and modify the nanoporosity evolution.
37

 All these 

discoveries lay a solid knowledge foundation to further develop detailed understanding of 

the intriguing structural transformations of multimetallic nanoparticles and enable us to 

fine-tune structures and compositions of the dealloyed spongy nanoparticles through 

rationally experimental design and finally pave a way to optimize their catalytic 

performances.  
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1.3.2 Galvanic Replacement Reactions 

Galvanic replacement provides another robust but versatile approach to controllably 

transform a solid monometallic nanoparticle into a diverse set of architecturally more 

sophisticated multimetallic hollow nanostructures (Figures 1.3A and 1.3B).
68

 Galvanic 

replacement occurring on metallic nanoparticles is essentially a unique nanoscale redox 

process that are unrealizable for bulk material systems, in which less noble metals get 

oxidized and dissolved accompanied by the reduction and deposition of noble metals on 

the sacrificial template surfaces. The resulting architectures are essentially determined by 

the intrinsic nature of sacrificial templates including redox potential, lattice mismatch 

between the replaced and deposited metals, atomic interdiffusion during the reaction, as 

well as the external effects companied with the reaction like chemical leaching, co-

reduction, or surface passivation under the conditions that galvanic replacement occur. 

Over the past two decades, the model system intensively investigated has been single-

crystalline Ag nanocubes, which evolve into a diverse set of multimetallic hollow 

nanostructures, such as nanobox, nanocage, or nanoframe upon straightforward galvanic 

replacement of Ag with Au, Pd, or Pt under deliberately controlled synthetic conditions 

(Figures 1.3C-1.3E).
69-73

 While by employing sophisticated multimetallic hetero-

nanostructures as the sacrificial templates, well-defined nanoparticles with more 

complicated interior and surface architectures, such as yolk-shell nanorattles,
74

 

multilayered nanomatryoshkas,
75

 and ultrathin skeletal nanoframes 
76

 also become 

experimentally available.  
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Figure 1.3. TEM images and the corresponding geometric morphology of various spherical (A) 

or cubic (B) hollow nanostructures obtained through galvanic-replacement reaction. Reprinted 

with permission from ref 68,
68

 Copyright 2011 American Association for the Advancement of 

Science. (C) SEM image of Au nanocages obtained by galvanic replacement of pure Ag 

nanocubes by HAuCl4. Reprinted with permission from ref 72,
72

 Copyright 2004 American 

Chemical Society; (D) TEM image of Au nanoframes obtained by combining galvanic 

replacement and wet chemical etching. Reprinted with permission from ref 73,
73

 Copyright 2007 

American Chemical Society. (E) TEM image of multiple-walls of Au-Ag alloy nanoshells 

obtained by galvanic replacement of Au-Ag alloy core and Ag shell heteronanostructures. 

Reprinted with permission from ref 71,
71

 Copyright 2004 American Chemical Society. (F) 

Schemes illustrating the formation of porous Au nanoparticles through the galvanic replacement 

of Au-containing bimetallic nanostructures. 
 

Atomically intermixed bimetallic nanocrystals adopting either disordered alloy 

configurations or ordered intermetallic structures 
77-79

 may undergo galvanic replacement 

reaction-driven structural transformations that are substantially more sophisticated and 

versatile than those of monometallic nanocrystals or phase-segregated bimetallic 

heteronanostructures, when key structure-evolutionary pathways, less-noble metal 

dealloying, new noble-metal deposition, and Kirkendall diffusion are taken into 
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considerations, as illustrated in Figure 1.3F. More importantly, because of the strong 

oxidation capability of noble metal precursors such as HAuCl4 and H2PtCl6 that 

commonly used to replace of less-noble metals, the nonoporousity evolutions of binary 

alloy with less-noble metal content below parting limit that are restricted by 

chemical/electrochemical percolation dealloying become achievable through galvanic 

replacement reaction. Thus it is expected to bring us more possibilities for constructing 

new porous architectures, for example, yolk-shell nanostructures, nanocages, or 

nanoshells, by using atomically well intermixed bimetallic nanoparticles as sacrificial 

templates during galvanic replacement reaction. Moreover, it is also demonstrated 

increasingly sophisticated interior and surface architectures, such as trimetallic hollow 

nanostructures and octahedral nanorattles have been controllably achieved by coupling 

galvanic replacement with kinetically controlled co-reduction, corrosion, or seed-

mediated growth.
80,81

 Therefore, it is also hypothesized that a modified galvanic 

replacement coupling with percolation dealloying or co-deposition could be able to 

achieve a new novel for precise control the surface composition and structure of the 

porous Au structures.  

1.4 Catalytic Performance of Dealloyed Au Porous Nanoparticles 

The precise control over architectural transformations of multimetallic nanoparticles 

through deliberately maneuvered dealloying induced by chemical etchants, applied 

anodic potentials or galvanic replacements, lays the foundation for us to quantitatively 

unravel the structure-composition-property correlations that underpin the catalytic 

behaviors of dealloyed porous nanocatalysts. In this section we mainly discuss current 

progress regarding the effects of several typical characteristics of dealloyed porous Au 
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nanocatalysts on their catalytic performances including catalytic activity and durability as 

well as selectivity toward various chemical or electrochemical reactions. 

1.4.1 Optimization of Catalytic Activity  

The representative factors that have usually been used to evaluate the catalytic activity 

of a catalyst are mass-specific activity and surface-specific activity. The specific surface 

area of a nanoparticle accessible for catalysis may drastically increase upon dealloying 

when a solid alloy nanoparticle is converted into a porous nanostructure with hollow 

interior and open surface structures. The enormous surface-to-mass and surface-to-

volume ratios of the dealloyed spongy nanoparticles are highly advantageous for 

achieving superior mass-specific activities, which becomes especially crucial when 

precious noble metals, such as Au, Pt, and Pd, are used as the catalysts. The surface-

specific activity of the nanoparticles, on the other hand, may also be greatly enhanced 

upon dealloying as a consequence of two intrinsically interconnected effects, geometric 

and electronic effects, both of which are intimately tied with the nature and density of the 

active sites on the nanoligament surfaces. It has been demonstrated that the primary 

surface active sites for electrocatalytic alcohol oxidation are the undercoordinated surface 

atoms located at the particle corners, edges, or the steps for noble metal nanoparticles, 

while the close-packed surface atoms on thermodynamically stable facets, such as [111] 

and [100] facets, are drastically less active.
42,82

  

1.4.2 Enhancing the Catalytic Durability 

The dealloyed macroscopic or nanoscale Au-rich porous materials comprising 

nanoligaments, despite their remarkable initial activities, inevitably undergo activity 

deterioration over time largely due to surface area/mass ratio decrease and loss of surface 
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active sites as a consequence of  the thermodynamically driven ligament coarsening 

during the catalytic reactions. It has been evident that the residual less-noble elements can 

well preserve the nanoligament surface active sites during the catalytic reactions and 

remarkably improve the catalytic durability of the dealloyed Au porous foam,
25

 although 

Erlebacher’s nanoporosity-evolution model claims that less-noble residual elements 

remain alloyed with Au and homogeneously distributed in the ligaments.
17

 The essential 

role of leachable residues introduced by co-leaching multiple less noble metal elements 

from multimetallic alloy nanoparticles or coupling galvanic replacement reactions in 

enhancing the catalytic durability of the dealloyed nanocatalysts arouses our great 

curiosities to investigate the effects of less-noble but nonleachable elements on catalytic 

behaviors of porous Au nanocatalysts. We assume the catalytic durability can be 

optimized by incorporation residual elements such as Ag or Pt into dealloyed porous Au 

nanoparticles because the surface atomic mobility of Pt is significantly lower than that of 

Au and Pt may locally accumulate around atomic step edges of Au to stabilize the 

undercoordinated Au surface atoms or form robust Au-Pt skin on the nanoligaments. 

Moreover, it is well known that porous Au nanoparticles demonstrated promising 

catalytic activity mainly in alkaline environment but Pt catalysts perform well in acidic 

condition,
20

 thus we speculate it might be able to expand reactivity to acidic or neutral 

conditions for Au nanocatalysts by doping Pt as a consequence of the Au surface property 

modified by residual Pt. The catalytic activity as well as the durability may be optimized 

by tuning the abundance of residues. 

1.4.3 Improving of Catalytic Selectivity 

Equally important to the catalytic activity and durability is the selectivity of a 
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nanocatalyst toward particular reactions of interest, how to optimize the catalytic 

selectivity of Au nanocatalyst, nevertheless, remains a big challenge. Although this 

problem can be overcome by using (precious-metal catalysts) oxides-supported ultrasmall 

Au nanoparticles or Au nanoclusters for certain oxidation or hydrogenation reactions,
83-86

 

it is found that the selectivity strongly depends on the interaction between Au and the 

support and surface ligand modification. Wittstock and co-workers reported the dealloyed 

support-free microscopic Au foam showed selective gas-phase oxidative coupling of 

methanol but with residual Ag as a “helper” which played a crucial role in manipulating 

the selectivity by regulating the availability of reactive oxygen on the surface during the 

gas reaction.
14

 Therefore, it has been long open questions and seems unexceptional to 

investigate the selectivity of dealloyed porous of Au nanocatalysts toward surface-

catalyzed reactions due to their substantially more complicated surface structures. 

Inspired by the close correlation between catalytic performance and atomic-level surface 

structure over polyhedral Au nanocrystals enclosed by specific types of well-defined low-

index and high-index facets with different surface atomic coordination numbers,
87-90

 we 

thus hypothesize the catalytic selectivity of Au nanocatalyst is intimately tied to the 

surface atomic coordination numbers. In contrast to the achievement in fine-tuning of 

surface atomic-level structure through facet control, precise control over the local 

environment at an atomic level of dealloyed Au porous nanoparticles seems an extremely 

challenging task because highly curve nanoligaments obtained through percolation 

dealloying of atomic well-mixed random alloy nanoparticles are dominated by 

substantially more complicated surface comprising a mixture of various crystal facets. On 

basis of the our precious understanding of architectural control, the dealloying behaviors 
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of the nanoparticles might be modified by exposure nanoparticle of intraparticle 

compositional gradient or ordered intermetallics upon dealloying environments and 

generate dealloyed particles with obviously different local surface structures, which 

might provide us an intriguing system to make the catalytic selectivity of the dealloyed 

Au porous nanoparticles achievable. In addition, it also speculates selectivity to specific 

reactions possibly can be realized through incorporation of residues, in the presence of 

pure components or intermixed with Au on the Au nanoligament surfaces, which 

probably has a great impact on the geometric and electronic properties and thus catalytic 

property of porous Au nanoparticles. 

1.5 Outline of the Dissertation 

This dissertation is primarily focused a Synthesize-Measure-Correlate strategy, 

integrating research efforts on architectural control of nanoparticles, structure and 

property characterizations, and elucidation of detailed structure-composition-property 

relationships. I first focus on the fabrication and percolation dealloying of Au-Cu binary 

alloy nanoparticles as a model system and then expand the materials systems of interest 

to multimetallic nanoparticles systems that are structurally more sophisticated and 

compositionally more diverse. Two main aims are covered in the motivations behind this 

research: (a) to pinpoint the effects of key thermodynamic, kinetic, and geometric factors 

dictating the architectural evolution of multimetallic alloy nanoparticles during 

nanoporosity-evolving percolation dealloying; (b) to develop quantitative understanding 

of detailed structure-composition-property relationships underpinning the electrocatalytic 

behaviors of dealloyed spongy nanoparticles. In chapter 2, I demonstrate upon thermal 

annealing in a reducing atmosphere, Au@Cu2O core-shell nanoparticles transform into 
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Au-Cu alloy nanoparticles with tunable compositional stoichiometries that are 

predetermined by the relative core and shell dimensions of their parental core-shell 

nanoparticle precursors. The Au-Cu alloy nanoparticles exhibit distinct dealloying 

behaviors that are dependent upon their Cu/Au stoichiometric ratios. For Au-Cu alloy 

nanoparticles with Cu atomic fractions above the parting limit, nanoporosity-evolving 

percolation dealloying occurs upon exposure of the alloy nanoparticles to appropriate 

chemical etchants, resulting in the formation of particulate spongy nanoframes with 

solid/void bicontinuous morphology composed of hierarchically interconnected nano-

ligaments. The dealloyed nanoframes possess two unique structural features, large open 

surface areas accessible by the reactant molecules and high abundance of catalytically 

active undercoordinated atoms on the ligament surfaces, both of which are highly 

desirable for high-performance electrocatalysis. Using the room temperature electro-

oxidation of methanol as a model reaction, we further demonstrate that through 

controlled percolation dealloying of Au-Cu alloy nanoparticles, both the 

electrochemically active surface areas and the specific activity of the dealloyed metallic 

nanoframes can be systematically tuned to achieve the optimal electrocatalytic activities. 

In chapter 3, I report that incorporation of Ag into Au-Cu binary alloy nanoparticles 

substantially enhances the Cu leaching kinetics while effectively suppressing ligament 

coarsening during nanoporosity-evolving percolation dealloying, enabling us to optimize 

both the specific surface areas and specific activities of the dealloyed Au nanosponge 

particles for electrocatalytic oxidation of alcohols. The residual Ag in the dealloyed 

nanosponge particles plays crucial roles in stabilizing the surface active sites and 

maintaining the specific surface areas during electrocatalytic reactions, thereby greatly 
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enhancing the durability of the electrocatalysts. The insights gained from this work shed 

light on the underlying roles of residual less-noble elements that are crucial to the rational 

optimization of electrocatalysis on noble metal nanostructures. In chapter 4, I find that 

colloidal Au@Cu2O core-shell nanoparticles undergo stepwise structural transformations 

to sequentially evolve into Au@Cu core-shell nanoparticles, alloy nanoparticles with 

compositional gradient (Alloy-G), and homogeneous alloy nanoparticles (Alloy-H) upon 

thermal heating in polyol solution. By varying the reaction temperatures, we can 

maneuver the reactions kinetics to control the intraparticle compositional gradient. Upon 

percolation dealloying, the Alloy-G bimetallic nanoparticles gradually evolve into 

nanoparticles with solid Au cores surrounded by nanoporous shells, whereas Alloy-H 

nanoparticles transform into spongy nanoparticles that are nanoporous throughout the 

entire particles. The dealloyed nanoparticles possess different surface atomic 

undercoordinations, which result in their selectively catalytic behaviors toward an 

important electrocatalytic reaction. This provides a unique way of achieving catalytic 

selectivity optimization of Au nanocatalysts through deliberate control over the 

percolation dealloying of bimetallic nanoparticles with interior compositionally gradients. 

In chapter 5, using Au-Cu alloy and intermetallic nanoparticles as structurally and 

compositionally fine-tunable bimetallic sacrificial templates, I show that atomically 

intermixed bimetallic nanocrystals undergo galvanic replacement-driven structural 

transformations remarkably more complicated than those of their monometallic 

counterparts. I interpret the versatile structure-transforming behaviors of the bimetallic 

nanocrystals in the context of a unified mechanistic picture that rigorously interprets the 

interplay of three key structure-evolutionary pathways, dealloying, Kirkendall diffusion, 
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and Ostwald ripening. By deliberately tuning the compositional stoichiometry and 

atomic-level structural ordering of the Au-Cu bimetallic nanocrystals, I have been able to 

fine-maneuver the relative rates of dealloying and Kirkendall diffusion with respect to 

that of Ostwald ripening, through which an entire family of architecturally distinct 

complex nanostructures are created in a selective and controllable manner upon galvanic 

replacement reactions. The insights gained form my systematic comparative studies form 

a central knowledge framework that allows us to fully understand how multiple classic 

effects and processes interplay within the confinement by a nanoparticle to 

synergistically guide the structural transformations of complex nanostructures at both the 

atomic and the particulate levels. In chapter 6, I endeavor to further push the structural 

and compositional control of multimetallic hollow nanostructures to a new level of 

precision and sophistication by coupling the percolation dealloying with galvanic 

replacement using bimetallic nanoparticles as initial sacrificial templates. I show that 

spongy NPs with ultrathin nanoligaments comprising Au-Cu alloy cores and Au-Pt alloy 

shells could be controllably synthesized by galvanic replacement of Au0.2Cu0.8 alloy with 

H2PtCl6 in the presence of HCl. The thickness and the composition of the ligament could 

be precisely tailored by control over the Cu leaching rate determined by HCl 

concentration versus galvanic replacement rate. The unique ligaments feature greatly 

enhances the structural stability of the active sites on the ligament surfaces, allowing us 

to retain the superior catalytic activities over much longer periods toward alcohol 

oxidation reactions in both acidic and alkaline environments relative to the commercial Pt 

black. In chapter 7, through combination the GRRs with codeposition, I also demonstrate 

that architecture significantly different hollow nanoparticles including spongy-like 
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nanoparticles, Pt-decorated nanospongies, and nanoshells particles could be controllably 

fabricated by maneuvering the relative reaction rate between the galvanic replacement 

and the reduction reaction in different polyols that served as both reaction solvent and 

reducing agent under the same conditions. The catalytic performances of various Pt-based 

hollow nanostructures were evaluated by choosing electrochemical oxidation of formic 

acid and hydrogen evolution in acidic environments as model reactions. It is found that 

the spongy-like nanoparticles with ultrathin nanligaments comprising Au-Cu alloy cores 

and Au-Pt shells exhibit superior catalytic activities compared with commercial Pt/C 

catalyst. In chapter 8, I systematically investigate the epitaxial growth of both face-

centered cubic (fcc) and hexagonal close-packed (hcp) Ni on fcc Au nanocrystal seeds in 

polyol solvents to shed light on the complex mechanisms underpinning the intriguing 

geometric evolution of lattice-mismatched bimetallic nanocrystals during seed-mediated 

heteroepitaxial overgrowth. My success in geometry-controlled syntheses of a series of 

Au-Ni bimetallic heteronanostructures, such as conformal core-shell nanoparticles, 

asymmetric heterodimers, and multibranched core-satellite nanocrystals, represents a 

significant step toward the extension of nanoscale interfacial heteroepitaxy from lattice-

matched bimetallic systems to the ones exhibiting large lattice mismatches and even 

dissimilar crystalline structures. The insights gained from this work serve as a central 

design principle that guides the development of new synthetic approaches to 

architecturally sophisticated and compositionally diverse multimetallic 

heteronanostructures. 
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CHAPTER 2 

CONTROLLED DEALLOYING OF ALLOY NANOPARTICLES 

TOWARD OPTIMIZATION OF ELECTROCATALYSIS ON SPONGY 

METALLIC NANOFRAMES  
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2.1 Introduction 

Multi-metallic nanoparticles (NPs), either heteronanostructures or homogeneous alloys, 

may undergo intriguing post-synthesis structural transformations upon intraparticle 

atomic migrations triggered by thermal,
1
 electrical,

2
 or chemical stimuli,

3
 providing a 

unique way to deliberately fine-tailor the geometries and thereby fine-tune the optical, 

electronic, and catalytic properties of the NPs. The chemical or electrochemical 

dealloying of metallic alloy materials, which involves selective leaching of the less-noble 

components from the alloy matrices accompanied by structural remodeling of the more-

noble components, represents an intriguing structural rearrangement that entangles 

multiple surface and bulk atomic dissolution and migration processes over the nanometer 

length-scale.
4
 A prototypical system of particular interest has been the percolation 

dealloying of bulk membranes of Au-Ag bimetallic alloys, which results in the formation 

of a unique solid/void bicontinuous nanoporous structure consisting of a three-

dimensional (3D) network of hierarchically interconnected Au-rich nano-ligaments.
4-6

 In 

striking contrast to the bulk Au films that are catalytically inactive, the dealloyed 

nanoporous Au membranes exhibit exceptionally high catalytic activities commensurate 

with those of the oxide-supported sub-5 nm Au NPs that have long been used for 

heterogeneous catalysis.
6,7

 The locally curved surfaces of the nano-ligaments are 

essentially enclosed by high densities of undercoordinated surface atoms, which serve as 

the active sites for catalyzing a series of interfacial chemical and electrochemical 

reactions.
7-9

  

Alloy NPs may undergo dealloying-induced structural transformations that are 

substantially more complicated than those of their macroscopic bulk alloy counterparts 
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displaying a planar surface to the electrolyte. Upon dealloying, an alloy NP may evolve 

into a variety of distinct nanostructures, such as a core-shell heterostructure with a noble 

metal shell encasing an alloy core,
10-13

 a sponge-like particle with hierarchical 

nanoporosity,
10-13

 or a skeletal nanoframe (NF) covered by a noble metal skin,
14-16

 

depending on the size, crystalline structure, compositional stoichiometry, and 

compositional gradient of the starting alloy NPs as well as the conditions under which the 

dealloying occurs. While each one of these structural transformations gives rise to 

drastically enhanced catalytic activities,
10,13,14,17,18

 the origin of the catalytic 

enhancements cannot be simply interpreted in the context of a single unified mechanism 

because multiple effects interplay and contribute synergistically to the overall catalytic 

activities. The specific surface area of a NP accessible for catalysis may drastically 

increase upon dealloying, especially when a solid alloy NP is converted into either a 

skeletal NF or a spongy nanoporous particle with hollow interior and open surface 

structures.
10,14,18 

The specific catalytic activity of the NPs, on the other hand, may also be 

greatly enhanced upon dealloying as a consequence of two intrinsically interconnected 

effects, geometric and electronic effects, both of which are intimately tied with the 

density and nature of the active sites on the NP surfaces.
2,19-21

 Unraveling the detailed 

structure-composition-activity correlations that underpin the intriguing catalytic 

behaviors of the dealloyed metallic NPs, however, has long been a challenging task due 

to the intrinsic structural and compositional complexity and diversity of the materials 

systems as well as lack of a versatile approach through which both the specific surface 

area and specific catalytic activity of a dealloyed NP can be precisely fine-tuned.  

Here we endeavor to push the structural control of dealloyed metallic nanocatalysts to 
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an unprecedented level of precision and versatility with the goal of paving an avenue 

toward the rational optimization of electrocatalysis. Dealloyed spongy nanoframes (NFs) 

represent a particularly interesting geometry with unique structural characteristics highly 

desirable for electrocatalysis. The enormous surface-to-volume and surface-to-mass 

ratios of the spongy NFs are highly advantageous for achieving superior mass activities, 

which become especially crucial when precious noble metals, such as Au, Pt, and Pd, are 

used as the catalysts.
14,22-24

 On the other hand, the locally curved surfaces of the nano-

ligaments are rich of catalytically active sites occupied by coordinatively unsaturated 

surface atoms.
8,9

 Using the methanol electro-oxidation as a model reaction, we 

demonstrate that both the catalytically active surface area and the density of active sites 

on the surfaces of spongy NFs can be deliberately tuned toward the optimization of 

electrocatalysis through controlled percolation dealloying of Au-Cu alloy NPs under mild 

conditions. 

2.2 Experimental Section 

Chemicals and Materials Polyvinylpyrrolidone (PVP, average MW 58,000), Cu(NO3)2, 

and Fe(NO3)3 were purchased from Alfa Aesar. Chloroauric acid (HAuCl4·4H2O), HNO3 

(65%), N2H4·3H2O solution (35 wt %), H2SO4 (98%), and Nafion perfluorinated resin 

solution (5 wt%) were purchased from Sigma-Aldrich. K2CO3 and 37% formaldehyde 

were purchased from J.T. Baker. Methanol, NaOH, KNO3, and KOH were purchased 

from Fisher Scientific. Ammonium Hydroxide (28-30%) was purchased from British 

Drug Houses. All reagents were used as received without further purification. Ultrapure 

water (18.2MΩ resistivity, Milli-Q, Millipore) was used for all the experiments. 

Synthesis of Au QSNPs and SRNPs. Au QSNPs (diameter of 104 + 6.5 nm), which 
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were used as the core materials for Au@Cu2O core-shell nanoparticle fabrication, were 

synthesized by reducing chloroauric acid with formaldehyde at room temperature.
25,26

 Au 

SRNPs with overall particle diameters of 120 + 7.2 nm were prepared following a 

protocol we recently published.
51, 27

 

Synthesis of Au@Cu2O Core-shell NPs. Au QSNPs (diameter of 104 + 6.5 nm) were 

used as the core materials for the fabrication of Au@Cu2O core-shell NPs following a 

previously published protocol.
26

 Briefly, 9.6 mL of Au QSNPs was first introduced into 

300 mL of 2 wt% PVP aqueous solution. Varying amount (0.3-3 mL) of 0.1 M Cu(NO3)2 

solution, depending on the desired thickness of the resulting Cu2O shells, was 

subsequently added. The reaction mixtures were transferred into an ice bath, and then 

0.67 mL of 5 M NaOH and 0.3 mL of N2H4·3H2O solution were added under magnetic 

stir. The solutions were kept stirring for 10 min, and the NPs were subsequently separated 

from the reaction solution by centrifugation (2000 rpm, 10 min) and redispersion in 

ethanol. More details of the core-shell NP synthesis can be found in a paper previously 

published by our group.
26

 

Synthesis of Au-Cu Alloy NPs. Au-Cu alloy NPs were prepared through thermal 

annealing of the Au@Cu2O core-shell NPs at 450 °C in a flow of H2 flow (50 sccm) 

under 100 Torr for 15 min in a tube furnace. The annealed samples were collected after 

cooling down to room temperature and were redispersed in 10 mL water. It was recently 

revealed by thermal gravimetric analysis that PVP in various nanocomposites underwent 

rapid thermal degradation at temperatures above ~420 °C.
28-30

 Therefore, thermal 

annealing at 450 °C enabled us not only to obtain fully alloyed NPs, but also to 

effectively remove the residual PVP possibly present on the NP surfaces (the synthesis of 
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Au@Cu2O core-shell NPs involved the use of PVP). 

Synthesis of Spongy NFs. Spongy NFs were fabricated through chemical dealloying 

upon the introduction of 1 mL of a chemical etchant, such as HNO3, Fe(NO3)3 or NH4OH, 

into 200 µL of colloidal Au-Cu alloy NPs at room temperature. After certain dealloying 

times, the dealloyed NFs were separated from the etchants through centrifugation and 

redispersion in water.  

Electrochemical Measurements. All the electrochemical measurements were 

performed using a CHI 660E workstation (CH Instruments, Austin, Texas) at room 

temperature with a three-electrode system composed of a Pt wire as the auxiliary, a 

saturated calomel electrode (SCE) as the reference, and a glassy carbon electrode (GCE, 

3 mm diameter) as the working electrode.  Typically, the GCE was polished with 0.3 mm 

alumina slurry and followed by washing with water and ethanol before use. Dry powders 

of spongy NFs, Au-Cu alloy NPs, Au QSNPs, or Au SRNPs with certain total masses 

were first redispersed in H2O to form colloidal suspensions (2.0 mg Au in 1.0 mL H2O), 

and then 2 μL of the colloidal ink were drop-dried on each pretreated GCE at room 

temperature. Finally, 2 μL of Nafion solution (0.2 wt%) was drop-dried to hold the NPs 

on the electrode surfaces. The Au mass of the NPs loaded on each GCE was kept at 4.0 

µg for comparison of the Mas and ECSAs of various samples. In a typical 

electrochemical test, CV scans were performed in a 0.5 M KOH solution with or without 

1.0 M CH3OH degassed with N2 at a sweep rate of 10 mV s
-1

. CV measurements for 

oxide stripping were conducted in N2-saturated 0.5 M H2SO4 solution at various potential 

sweep rates in range of 5-500 mV s
-1

. The polarization trace was normalized against the 

Au mass of the NPs loaded on each GCE. 
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Structural and Compositional Characterizations. The morphologies and structures 

of the NPs were characterized by TEM using a Hitachi H-8000 transmission electron 

microscope, which was operated at an accelerating voltage of 200 kV. All samples for 

TEM measurements were dispersed in ethanol and drop-dried on 400 mesh carbon-coated 

Cu grids. The structures and compositions of the nanoparticles were also characterized by 

SEM and EDS using a Zeiss Ultraplus thermal field emission scanning electron 

microscope. The samples for SEM and EDS measurements were dispersed in ethanol and 

drop-dried on silicon wafers. The atomic level structures of the nanoparticles were 

resolved by HAADF-STEM using a JEOL 2100F 200 kV FEG-STEM/TEM microscopy 

equipped with a CEOS CS corrector on the illumination system. The samples for 

HAADF-STEM/EDS measurements were dispersed in ethanol and drop-dried on Mo 

grids with ultrathin carbon support film. The optical extinction spectra of the NPs were 

measured on aqueous colloidal suspensions at room temperature using a Beckman coulter 

Du 640 spectrophotometer. PXRD patterns were record on Bruker axs D8 Discover (Cu 

Kα = 1.5406 Å). A Finnigan ELEMENT XR double focusing magnetic sector field 

inductively coupled plasma-mass spectrometer (SF-ICP-MS) was used for the analysis of 

Cu (65, MR), Au (197, MR) and internal standard Rh (103 MR). 0.2 mL min
-1

 Micromist 

U-series nebulizer (GE, Australia), quartz torch and injector (Thermo Fisher Scientific, 

USA) were used for sample introduction. Sample gas flow was at 1.08 mL min
-1

. The 

forwarding power was 1250 W. The sample for ICP-MS measurements were prepared by 

adding 1 mL nitric acid and 3 mL of hydrochloric acid into Teflon digestion vessels 

containing the NP samples. The samples were digested using hot block at 180
o 
C for 4 h. 

The digestates were brought to 50 mL with water. A 3-point calibration curve was used 
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for Cu and Au. The calibration range was from 50 to 600 ppb. The R square values for 

the initial calibration curves were greater than 0.995. XPS measurements were carried out 

using a Krato AXIS Ultra DLD XPS system equipped with a monochromatic Al Kα 

source. The samples for XPS measurements were all freshly prepared and dried in 

vacuum before being loaded into the XPS chambers. 

2.3 Results and Discussions 

Our synthetic approach to the electrocatalytically active spongy NFs involves two key 

steps as schematically illustrated in Figure 2.1A. We started from Au@Cu2O core-shell 

NPs, which underwent chemical reduction followed by intraparticle alloying
31

 to evolve 

into Au-Cu alloy NPs upon thermal annealing in a reducing atmosphere, such as H2. The 

Au-Cu alloy NPs further transformed into spongy NFs through percolation dealloying 

when exposed to a chemical etchant, such as nitric acid (HNO3). We used a combination 

of scanning electron microscopy (SEM), transmission electron microscopy (TEM), 

energy-dispersive spectroscopy (EDS), and powder X-ray diffraction (PXRD) to 

systematically track the structural and compositional changes of the NPs during the 

nanoscale alloying and dealloying processes. The Au-Cu2O hybrid NPs exhibited a well-

defined core-shell heterostructure clearly resolvable by electron microscopies (Figure 

2.1B) and EDS elemental analysis. After the core-shell NPs were thermally annealed in a 

flow of H2 (50 sccm) under 100 Torr at 450 °C for 15 min, the contrast between the core 

and the shell in the SEM and TEM images completely disappeared (Figure 2.1C), 

indicating the formation of Au-Cu bimetallic alloy NPs.  
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Figure 2.1. Nanoparticle structural evolution during nanoscale alloying and dealloying. (A) 

Schematic illustration of the transformation of Au@Cu2O core-shell NPs into Au-Cu alloy NPs 

upon alloying and the transformation of Au-Cu alloy NPs into spongy NFs upon dealloying. (B) 

SEM image of Au@Cu2O core-shell NPs (average core diameter of 104 nm and shell thickness of 

51 nm). The inset shows a TEM image of an individual Au@Cu2O core-shell NP. (C) SEM 

image of Au0.19Cu0.81 alloy NPs. The inset shows a TEM image of an individual Au0.19Cu0.81 alloy 

NP. (D) SEM and (E) TEM images of spongy Au0.72Cu0.28 alloy NFs obtained through dealloying 

of the Au0.19Cu0.81 alloy NPs in 0.5 M HNO3 for 3 h. (F) HAADF-STEM image (left panel) and 

EDS elemental distribution of Au (upper right panel) and Cu (lower right panel) of an individual 

Au0.72Cu0.28 alloy NF particle. The compositions of the alloy NPs and dealloyed NFs were 

quantified by EDS.  

 

The EDS elemental mapping results further verified that the Au and Cu atoms were 

homogenously intermixed in the alloy NPs. During the percolation dealloying, the alloy 

NPs further evolved into compositionally Au-rich spongy NFs as Cu was selectively 

dissolved from the alloy matrix. Figures 2.1D, 2.1E, and 2.1F showed the SEM, TEM, 

and high-angle annular dark-field scanning electron microscopy (HAADF-STEM) 

images, respectively, of the spongy NFs obtained through dealloying of Au0.19Cu0.81 alloy 

NPs in 0.5 M HNO3 for 3 hours at room temperature. Each particle exhibited a 
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bicontinuous nanoporous structure composed of nano-curved ligaments that were 5 nm to 

25 nm thick with pore diameters in the range from 10 to 40 nm. While the Cu/Au atomic 

ratio significantly decreased after percolation dealloying, the ligaments of the dealloyed 

NFs were still composed of Au-Cu alloys rather than segregated monometallic domains 

(see STEM-EDS mapping results in Figure 2.1F).  

The core and shell dimensions of the starting Au@Cu2O core-shell NPs could be fine-

controlled over a broad size range using a seed-mediated growth method we recently 

developed,
26

 which allowed us to fine-tune the compositions of the alloy NPs. While the 

overall particle sizes shrank significantly upon alloying, both the quasi-spherical 

morphology and the Cu/Au stoichiometric ratios of the NPs were well-preserved. 

Therefore, the Cu/Au stoichiometric ratios of the alloy NPs were essentially determined 

by the relative core and shell dimensions of the Au@Cu2O core-shell NP precursors and 

could be systematically tuned over a broad range approximately from 0.3 to 4. The as-

fabricated Au-Cu alloy NPs were essentially composed of random alloys
21

 rather than 

ordered Au-Cu intermetallics with specific Cu/Au stoichiometries, such as Au3Cu, AuCu, 

or AuCu3.
32,33

 The lattice parameters of the face-centered cubic (fcc) Au-Cu alloy NPs 

were calculated using the Bragg’s law 

)sin(2 hkl

hkld



                                   (1), 

where λ is the wavelength of the incident X-ray (λ = 1.5406 Å for Cu Kα), dhkl is the 

lattice spacing of the crystalline plane with Miller index of {khl}, and θhkl is the angle of 

incidence on the {khl} plane. We calculated the Cu/Au stiochiometric ratios of various 

Au-Cu alloy NPs based on the position of the (111) diffraction peak, assuming that the 
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lattice parameters of a solid solution agree with a linear relationship between the two end 

points of alloying elements, an empirical rule known as the Vegard’s law.
34

 Although 

some bimetallic alloys may deviate significantly from the Vegard’s law, Au-Cu binary 

random alloys only exhibit slight deviations from the Vegard’s law.
35 The Cu/Au atomic 

ratios calculated from the PXRD results were in very good agreement with those 

quantified by inductively coupled plasma mass spectrometry (ICP-MS) and EDS. 

Colloidal Au@Cu2O core-shell NPs exhibited strong dipolar plasmon resonances that 

progressively red-shifted from the visible into the near-infrared as the thickness of the 

Cu2O shell increased
25,26,36

. The transformation of core-shell NPs into alloy NPs 

introduced drastic modifications to both the plasmon resonance frequencies and optical 

extinction spectral line-shapes of the NPs. As the Cu/Au stoichiometric ratio and the 

particle size increased, the plasmon resonance of the alloy NPs red-shifted, accompanied 

by significant peak broadening due to the plasmon damping caused by alloying of Au 

with Cu.
37-39

 The key extinction spectral features observed experimentally were well 

reproduced by the Mie scattering theory calculations.  

The Au-Cu alloy NPs exhibited interesting composition-dependent chemical 

dealloying behaviors. Upon exposure to 0.5 M HNO3 at room temperature, Cu-rich alloy 

NPs with a Cu atomic percentage (at %) above ~ 70 % underwent nanoporosity-evolving 

percolation dealloying, during which the Cu/Au atomic ratios progressively deceased 

accompanied by ligament thickening and pore volume expansion until complete leaching 

of Cu within a few hours. In striking contrast, Au-rich alloy NPs (Cu at % < ~ 65 %) 

exhibited unnoticeable morphological and compositional changes over extended time 

periods up to even a few days under identical dealloying conditions. Such composition-
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dependent dealloying behaviors of Au-Cu alloy NPs can be interpreted in the context of 

the parting limit and critical potential for the percolation dealloying.
11

  

For a macroscopic A1-pBp binary alloy (A and B represent the more-noble and the less-

noble elements, respectively, and p is atomic fraction of B), percolation dealloying occurs 

only when the p is higher than a threshold value known as the parting limit. In Ag-Au 

alloys, this parting limit was measured to be ∼55 at % Ag.
4
 The corresponding 

electrochemical parameter signifying the onset of percolation dealloying is termed the 

critical potential, E̅c, which is related to the B/electrolyte interfacial free energy, 
elecB /

 , 

the molar volume of A, ΩA, and the equilibrium potential, E̅eq, above which the surface 

dealloying at the top-most atomic layer occurs. The relationship between E̅c and E̅eq is 

given by
40

 





nF
pEpE

AelecB
eqc


 /

4
)()(                      (2),               

where n is the number of electrons transferred upon oxidation of 1 atom of B, F is the 

Faraday constant, and ξ represents the local radius of the surface where a cylindrical pit is 

created at the initial stage of nanoporosity evolution. ξ is related to both p and the 

nearest-neighbor spacing, a, as shown by 

       a
p

p







1

1
                         (3). 

For macroscopic bimetallic alloys, both the E̅c and E̅eq are functions of the alloy 

composition and the E̅c values are more positive than E̅eq when the solid-state mass 

transport is slower than the imposed rate of dealloying. At a potential above the E̅c, 

percolation dealloying results in the evolution of nanoporosity, while below E̅c only 
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superficial dealloying can occur, forming a conformal surface atomic layer of the more-

noble component which passivates the surface and thereby inhibits the nanoporosity 

formation.
41,42

   

For a spherical A1-pBp alloy NP of radius r, the critical potential becomes not only 

dependent on the composition but also on the size of the NP. Accordingly, the Ec(p,r) of 

the alloy NP is given by
11

 

)
2

()]()([)(),(
nFr

fpErpE AAlloyAAlloycc 


                      (4), 

where γAlloy is the alloy/electrolyte interfacial free energy, fAlloy is the alloy/electrolyte 

interface stress, 
A


is the partial molar volume of A in the alloy, and ⟨Ω⟩ is the average 

molar volume of the alloy. When r is greater than ∼5 nm, equations (2) and (4) provide 

virtually identical results because the maximum values of γAlloy and fAlloy are ∼ 2 and ~ 6 J 

m
–2

, respectively.
43

 Therefore, alloy NPs larger than ~ 10 nm typically undergo 

dealloying-induced structural transformations analogous to those of their bulk 

counterparts with the same compositions. It was shown that Au-Ag alloy NPs larger than 

10 nm evolved into spongy nanoporous structures whereas their sub-10 nm counterparts 

transformed into core-shell NPs under identical dealloying conditions.
11

 Since the particle 

sizes under the current investigations were far beyond 10 nm, the Au-Cu alloy NPs 

evolved into spongy NFs when the Cu content was higher than the parting limit, which 

was determined to be ~ 70 at % of Cu. Dealloying of the Au0.31Cu0.69 alloy NPs resulted 

in a mixture of solid alloy NPs and spongy NFs owing to the intrinsic particle-to-particle 

compositional variations within the sample. 

The composition-dependent electrochemical dealloying behaviors of the Au-Cu alloy 
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NPs were further investigated by linear sweep voltammetry (LSV) measurements in 1.0 

M KNO3 electrolyte (pH = 7) at a sweep rate of 5.0 mV s
-1

 using a three-electrode system. 

During the positive potential sweep, the anodic current remained at a low level until 

reaching the Ec, at which point the anodic current started to increase rapidly due to 

percolation dealloying. The onset potential for Cu dissolution from the Au0.19Cu0.81 NPs 

was positively shifted in comparison to that of monometallic Cu NPs because the less-

noble Cu was significantly stabilized when it was alloyed with the more-noble Au, a 

well-known characteristic of bulk binary alloy materials
4
 that is yet still less explored in 

alloy NP systems.
44,45

 For Au-Cu alloy NPs with Cu at % below the parting limit, 

however, only superficial dealloying could occur at the topmost atomic layer on the NP 

surfaces due to surface passivation by a Au-rich atomic layer or an oxide adlayer. As a 

consequence, the anodic peak currents decreased dramatically by more than 2 orders of 

magnitudes with the onset potential for dealloying shifted to significantly more positive 

values. Consistent with the structural evolutions upon chemical dealloying, the 

electrochemical percolation dealloying resulted in nanoporous spongy NFs as well, 

whereas the surface dealloying of the alloy NPs with Cu at % below the parting limit did 

not introduce any substantial morphological changes observable by TEM. The Ec was 

found to be dependent not only on the NP compositions but also on the pH of the 

electrolytes. In an acidic electrolyte, such as H2SO4, both the onset potential for 

percolation dealloying and the anodic peak potential negatively shifted with respect to 

those in the neutral electrolytes. However, the alloy NPs became much more resistive 

against percolation dealloying in an alkaline environment, e.g. KOH electrolyte, possibly 

due to the surface passivation by the oxide surface layers that formed at sufficiently high 
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potentials.  

The nanoporosity evolution during percolation dealloying is essentially a multi-scale 

structural rearrangement governed by two intertwining and competing processes, 

ligament domain coarsening and framework expansion. The percolation dealloying was 

initiated upon the dissolution of a Cu atom at the alloy surface, leaving behind a terrace 

vacancy coordinated with undercoordinated Cu atoms that were more susceptible to 

further dissolution. As the entire terrace was stripped, the coordinatively unsaturated Au 

atoms left behind the dealloying frontiers underwent fast surface migration to 

agglomerate into Au-rich local islands. Therefore, the surface of the alloy upon initiation 

of dealloying was comprised of Au-rich domains that locally passivated the surface and 

patches of undealloyed material directly exposed to electrolyte.
4
 As the percolation 

dealloying further proceeded, the interfacial dissolution of Cu atoms and coarsening of 

the Au-rich domains continued, gradually evolving into bicontinuous spongy structures. 

Meanwhile, the outward migration of Cu atoms was faster than the inward migration of 

Au atoms in the alloy matrix,
46

 providing additional contribution to the expansion of the 

pores during the nanoporosity evolution. This effect, known as the Kirkendall effect, has 

been harnessed to fabricate hollow NPs with fine-tailored interior structures.
47-50

 For an 

alloy NP, the ligaments domain coarsening resulted in the thickening of the ligaments and 

shrinkage of the overall particle size, whereas the framework expansion driven by the 

Kirkendall effect led to increased overall particle size and pore volumes. The relative 

rates of the ligament domain coarsening and framework expansion could be maneuvered 

by tuning the rates of Cu leaching during the percolation dealloying.   

We systematically studied the kinetics and thermodynamics of the Cu leaching from 
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Au0.19Cu0.81 alloy NPs during percolation dealloying in the presence of three different 

chemical etchants, HNO3, Fe(NO3)3, and ammonia, in aqueous environment under 

ambient conditions. Both HNO3 and Fe(NO3)3 are oxidative etchants that directly oxidize 

metallic Cu and selectively dissolve the Cu from the alloy NPs, thereby giving rise to 

relatively fast Cu leaching upon percolation dealloying. The leaching of Cu from the 

alloy NPs exposed to ammonia, however, is essentially a consequence of oxidation of Cu 

by the oxygen dissolved in the aqueous solution followed by the formation of water-

soluble Cu(NH3)4
2+

 and Cu(NH3)2
+
 complexes.

51
 Therefore, the rate of Cu leaching upon 

dealloying in ammonia appeared much slower than those in HNO3 and Fe(NO3)3. The 

Cu/Au atomic ratios progressively decreased as the percolation dealloying proceeded 

until reaching a thermodynamic equilibrium point. Because of their different standard 

redox potentials, HNO3, Fe(NO3)3, and O2/ammonia resulted in different equilibrium 

Cu/Au stoichiometries. While complete Cu leaching (less than 3 at % residual Cu) was 

achieved after dealloying within 1 h in 2.0 M HNO3, Fe(NO3)3 and O2/ammonia only 

resulted in partial leaching of Cu when reaching the thermodynamic equilibria. These 

partially dealloyed NFs obtained in Fe(NO3)3 or O2/ammonia underwent further Cu 

leaching upon exposure to HNO3.   

The Cu leaching from the Au0.19Cu0.81 alloy NPs under the non-equilibrium conditions 

was observed to be a continuous process; however, once the particles were separated 

from the etchants through centrifugation followed by redispersion in water, further 

dealloying of the partially dealloyed NFs could be effectively inhibited, enabling us to 

kinetically trap spongy NFs with fine-controlled pore volumes, ligament thicknesses, and 

Cu/Au stoichiometries. As shown in Figure 2.2, the degree of Cu leaching and the 
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structural features of the dealloyed NFs could be systematically tuned by changing the 

etchants or the concentration of each etchant at fixed dealloying times. When fixing the 

dealloying time at 1 hour, increasing the HNO3 concentration resulted in more Cu 

leaching, larger average pore sizes, thicker ligaments, and smaller overall sizes of the 

dealloyed NFs.  In HNO3, the leaching of Cu from the alloy NPs was faster than the 

atomic diffusion of Cu in the alloy matrix. Therefore, the nanoporosity evolution was 

dominated by the ligament domain coarsening rather than framework expansion, leading 

to significant thickening of the ligaments and shrinkage of the overall size of the 

dealloyed NFs as increasing amount of Cu was dissolved. A similar volume shrinkage of 

macroscopic Ag-Au alloy bulk materials by up to 30 vol % was previously observed 

during fast electrochemical dealloying as a consequence of the lattice defect formation 

and local plastic deformation both associated with ligament coarsening.
52

 When the 

percolation dealloying occurred in ammonia, however, the overall particle sizes were 

observed to increase with the ammonia concentration when the dealloying time was fixed 

at 2 hours. In ammonia, as Cu leaching became slower than the atomic diffusion of Cu, 

the Kirkendall effects started to dominate the nanoporosity evolution, which resulted in 

the expansion of the particle frameworks. In Fe(NO3)3, the rates of Cu leaching and 

atomic diffusion of Cu were comparable, and thus the overall size of the dealloyed NFs 

remained almost unchanged regardless of the concentration of Fe(NO3)3 and the amount 

of Cu leached during the percolation dealloying.  
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Figure 2.2. Compositional and structural evolution of Au0.19Cu0.81 alloy NPs during 

percolation dealloying. TEM images of spongy NFs obtained after exposure of Au0.19Cu0.81 alloy 

NPs to (A) 0.2 M, (B) 0.5 M, (C) 1.0 M, and (D) 2.0 M HNO3 for 1 h. (E) Cu at % (quantified by 

EDS) and overall particle diameters of spongy NFs obtained after exposure of Au0.19Cu0.81 alloy 

NPs to various concentrations of HNO3 for 1 h. TEM images of spongy NFs obtained after 

exposure of Au0.19Cu0.81 alloy NPs to (F) 0.2 M, (G) 0.5 M, (H) 1.0 M, and (I) 2.0 M Fe(NO3)3 for 

2 h. (J) Cu at %  and overall particle diameters of spongy NFs obtained after exposure of 

Au0.19Cu0.81 alloy NPs to various concentrations of Fe(NO3)3 for 2 h. TEM images of spongy NFs 

obtained after exposure of Au0.19Cu0.81 alloy NPs to (K) 2.0 M, (L) 5.0 M, (M) 8.0 M, and (N) 

14.0 M NH4OH for 2 h. (O) Cu at % and overall particle diameters of spongy NFs obtained after 

exposure of Au0.19Cu0.81 alloy NPs to various concentrations of ammonia for 2 h. All TEM images 

share the same scale-bar in panel A. The Cu atomic percentages were quantified by EDS and the 

error bars represent the standard deviation of 3 samples fabricated under exactly the same 

conditions. The average particle diameters and standard deviations were obtained from more than 

100 particles in the TEM images of each sample. 

 

We used high-resolution HAADF-STEM to characterize the atomic-level structures of 

the dealloyed NFs. As shown in Figure 2.3A, a representative particle in the dealloyed 

Au0.97Cu0.03 NF sample (obtained through dealloying of Au0.19Cu0.81 alloy NPs in 2.0 M 

HNO3 for 1 h) exhibited a bicontinuous architecture consisting of hierarchically 
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interconnected nano-ligaments whose compositions were dominated by Au. Panels A-a 

and A-b show the high-resolution HAADF-STEM images of two regions in Panel A 

labeled as a and b, respectively, with the electron beam projected along the [011] zone 

axis of the crystalline domains. The corresponding fast Fourier transform (FFT) patterns 

further confirmed the orientation of the crystalline domains in the ligaments. The lattice 

fringes corresponding to the face center cubic phase of Au were well resolved in the 

high-resolution HAADF-STEM images. No segregated monometallic Cu domains were 

observed either in the bulk or on the surfaces of the ligaments, suggesting that the 

residual Cu was randomly intermixed with Au. When the atomic fraction of the residual 

Cu was below 3 %, the Cu signals in EDS became indistinguishable from the noise, 

making it difficult to characterize the spatial distribution of Cu elements in the ligaments 

through EDS elemental mapping. However, the residual Cu was clearly resolvable by X-

ray photoelectron spectroscopy (XPS), which is a sensitive surface analysis technique. 

While the binding energies of the Au 4f peaks slightly up-shifted by ~ 0.05 eV in 

comparison to those of the bulk Au, the Cu 2p XPS peaks exhibited more pronounced 

down-shifts by ~ 0.5 eV with respect to those of the bulk Cu due to the alloying of Cu 

with Au
53

. The surface Cu/Au atomic ratio was quantified to be ~ 0.02 by XPS, which 

was in agreement with the bulk Cu/Au atomic ratio obtained from EDS.  The XPS and 

EDS results showed that the residual Cu in the fully dealloyed NFs was randomly 

intermixed with the Au matrix rather than being segregated on the ligament surfaces. The 

residual Cu was highly resistive against leaching. Further exposure of the Au0.97Cu0.03 

NFs to 2.0 M HNO3 for 12 hours did not result in any observable decrease in the surface 

Cu/Au atomic ratios according to the XPS results. 
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The surfaces of the ligaments were enclosed by a mixture of both high-index and low-

index local facets (Figure 2.3A). The locally flat surface regions of a monocrystalline 

domain were typically enclosed by thermodynamically stable low-index facets, such as 

{111} facets, whereas in the locally curved regions, the surfaces were terminated with 

high-index facets with high densities of undercoordinated surface atoms at the atomic 

steps, kinks, and terrace edges. Coordinatively unsaturated surface atoms were also 

present at the boundaries between two twinned crystalline domains. The high abundance 

of undercoordinated surface atoms is a unique feature of NPs with highly curved surfaces, 

such as the catalytically active sub-5 Au NPs
54

 and Au surface-roughened nanoparticles 

(SRNPs). We synthesized Au SRNPs with overall particle diameters of 120 + 7.2 nm 

using a kinetically controlled, seed-mediated nanocrystal growth method previously 

developed by our group.
55

 The Au SRNPs exhibited nanoscale surface roughness (Figure 

2.3B) with high abundance of undercoordinated surface atoms at the locally curved 

surface sites (see more detailed structural characterizations in a previously published 

paper from our group
27

). The Au SRNPs exhibited much smaller specific surface areas 

than the dealloyed NF particles because of their solid interiors. In contrast to the Au 

SRNPs and dealloyed NFs, the surfaces of the multi-faceted Au QSNPs (diameter of 104 

+ 6.5 nm) were essentially dominated by low-index facets bound with close-packed 

surface atoms (Figure 2.3C) with only a small fraction of undercoordinated surface atoms 

present at the particle corners, edges, crystalline boundaries, and surface defects.  
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Figure 2.3. Atomic-level surface structures and electrocatalytic activity of fully dealloyed 

spongy NFs. (A) HAADF-STEM image of an individual Au0.97Cu0.03 NF particle. High-

resolution HAADF-STEM images showing the atomic-level structures of regions a and b are 

shown in panel A-a and panel A-b, respectively. The insets in panels A-a and A-b are the FFT 

patterns of the regions labeled as i, ii, and iii, respectively. In the high-resolution HAADF-STEM 

images, the crystalline domains were projected along the [011] zone axis. SEM images of (B) a 

Au SRNP with solid interior core and (C) a Au QSNP. (D) CV curves of Au0.97Cu0.03 NFs, Au 

SRNPs, and Au QSNPs in 0.5 M H2SO4 at a potential sweep rate of 5.0 mV s
-1

. The 

electrochemical signals from SRNPs and QSNPs were multiplied by a factor of 5 for clearer 

comparison. (E) CV curves of Au0.97Cu0.03 NFs, Au SRNPs, and Au QSNPs in 1.0 M methanol 

and 0.5 M KOH at a potential sweep rate of 10 mV s
-1

. CV curve of Au0.97Cu0.03 NFs in the 

absence of methanol is shown as the dash curve. (F) Mass activities (MAs), electrochemically 

active surface areas (ECSAs), and specific activities (SAs) of Au0.97Cu0.03 NFs, Au SRNPs, and 

Au QSNPs in 1.0 M methanol and 0.5 M KOH at a potential sweep rate of 10 mV s
-1

.  

 

We used cyclic voltammetry (CV) as an electrochemical tool to further characterize 

the atomic-level surface structures and specific surface areas of the dealloyed NFs, Au 
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SRNPs, and Au QSNPs. CV-based electrochemical oxide stripping is a method 

commonly used to study the surface structures of bulk Au
56,57

 and more recently Au 

NPs
58-61

 as well. Figure 2.3D showed the CV curves of various samples obtained in 0.5 M 

H2SO4 at a sweep rate of 5.0 mV s
-1

. During the positive potential scans of the CV 

measurements, both the dealloyed Au0.97Cu 0.03 NFs and Au SRNPs exhibited oxidation 

peaks in the range of 0.95-1.25 V vs. Saturated Calomel Electrode (SCE), whereas Au 

QSNPs exhibited an oxidation peak in higher potential range above 1.40 V (vs. SCE).  

The negative shift of oxidation peaks observed on the dealloyed NFs and SRNPs 

suggested that the surfaces of the NFs and SRNPs were easier to get oxidized to form an 

oxide surface layer due to the presence of highly abundant undercoordinated surface 

atoms while the close-packed surface atoms on Au QSNPs were more resistive against 

oxidation. During the negative potential scans, the sharp reduction peak centered around 

0.9 V (vs. SCE) signified the electrochemical stripping of the surface oxide layers formed 

in the previous positive potential scan. Although the onset potentials of the surface atom 

oxidation were sensitively dependent on the surface atomic coordination numbers, the 

electrochemical stripping of the gold oxide surface layers occurred in essentially the same 

potential range from ~0.98 V to ~ 0.85 V (vs. SCE), which was in line with previous 

observations on Au bulk films
56,57

 and NPs.
58-61

  Assuming the specific charge associated 

with gold oxide stripping to be 450 μC cm
−2

,
62

 the mass-specific electrochemically active 

surface area (ECSA) of the dealloyed NFs was estimated to be ~ 20 m
2
 g

-1
, approximately 

1 order of magnitude higher than that of SRNPs and 2 orders of magnitude higher than 

that of the QSNPs, respectively, despite the fact that the dealloyed NFs, SRNPs, and 

QSNPs all had similar overall particle sizes. 
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We quantitatively compared the electrocatalytic activities of the dealloyed NFs, 

SRNPs, and QSNPs using the room-temperature electrocatalytic methanol oxidation 

reaction (MOR) in alkaline aqueous environment as a model reaction. As shown in 

Figure 2.3E, while the Au QSNPs exhibited poor electrocatalytic activity toward MOR, 

both the dealloyed Au0.97Cu0.03 NFs and Au SRNPs were much more active. The onset 

oxidation potential and peak potential for MOR were around 0.1 V (vs. SCE) and 0.3 V 

(vs. SCE), respectively. By normalizing the oxidation peak current against the mass of Au 

on each electrode, a mass activity (MA) of ~ 12 µA µg
-1

 was obtained at 0.3 V on the 

dealloyed Au0.97Cu0.03 NFs at a sweep rate of 10.0 mV s
-1

, which was about 1 order of 

magnitude higher than that of the SRNPs. For NPs of noble metals, such as Au, Pt, and 

Pd, the undercoordinated surface atoms have been identified to be the electrocatalytically 

active sites for MOR and other alcohol oxidation reactions.
2,63

 Therefore, the superior 

electrocatalytic activity toward MOR observed on the dealloyed Au0.97Cu0.03 NFs 

originated from both their large specific ECSA and high density of surface active sites. 

By normalizing the MAs against ECSAs, the specific activities (SAs) of the NPs were 

obtained, which were directly related to the active site density on the NP surfaces. In 

Figure 3F, we compared the MAs, ECSAs, and SAs of the dealloyed Au0.97Cu0.03 NFs 

with those of the Au SRNPs and QSNPs. Interestingly, the Au SRNPs exhibited a SA 

only slightly lower than that of dealloyed NFs, indicating comparable densities of surface 

active sites, i.e. undercoordinated surface atoms, on the dealloyed NFs and Au SRNPs.  

However, the dealloyed NFs exhibited much higher MA than Au SRNPs because of their 

significantly larger ECSA. For a low-index faceting Au QSNP, the undercoordinated 

surface atoms are located at the particle corners and edges and thus only account for a 
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vanishingly small fraction of the surface atoms when the particle size becomes larger 

than 10 nm.
64

 Therefore, the Au QSNPs exhibited diminished electrocatalytic activity for 

MOR due to their limited SA and ECSA.  

The controlled percolation dealloying of Au-Cu alloy NPs allowed us to 

systematically tune both the ECSAs and the SAs of the dealloyed NFs to achieve the 

optimal MAs for MOR. In Figure 2.4A, we compared the MAs of 5 dealloyed NF 

samples with different degrees of Cu leaching. The NF samples labeled as NF-i, NF-ii, 

NF-iii, and NF-iv corresponded to the samples obtained through dealloying of 

Au0.19Cu0.81 alloy NPs in 0.2 M, 0.5 M, 1.0 M, and 2.0 M Fe(NO3)3 for 2 hours, 

respectively. The sample labeled as NF-v was obtained through dealloying of Au0.19Cu0.81 

alloy NPs in 2.0 M HNO3 for 1 hour. The HAADF-STEM images highlighting the key 

structural features of individual NF particles representing each sample were also shown 

as the insets of Figure 2.4A. From NF-i to NF-v, the Cu/Au stoichiometric ratios 

decreased (Figure 2.4B, top panel) while both the average ligament thicknesses and pore 

sizes increased. All the NF samples exhibited much higher MAs than the solid alloy NPs 

and NF-ii exhibited the highest MA among the NF samples. The MAs of the dealloyed 

NFs were primarily determined by both the NF surface areas and the active site densities 

on the ligament surfaces rather than the Cu/Au stoichiometric ratios. The dealloyed 

spongy NFs exhibited drastically higher activities than the solid Au-Cu alloy NPs with 

similar Cu/Au stoichiometric ratios.  

We semi-quantitatively assessed the ECSAs of various NF samples based on the 

electrochemical oxide stripping results. For the Au-Cu alloy NFs, Cu leaching occurred 

during the electrochemical oxide stripping experiments at relatively slow potential sweep 
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rates (e.g. 5 mV s
-1

), which prevented us from obtaining meaningful ECSA results. 

Therefore, to accurately measure the ECSAs of the Cu-containing alloy NFs, the CV 

measurements were carried out at much faster potential sweep rates to effective suppress 

the kinetically slow Cu leaching process. As demonstrated on Au0.97Cu0.03 NFs (no 

further Cu leaching during CV scans), the ECSA values measured at various potential 

sweep rates in the range from 5 mV s
-1

 to 500 mV s
-1

 were highly consistent, though the 

multi-peaked features in the potential range of 1.0-1.3 V (vs. SCE) signifying the 

electrochemical oxidation of the undercoordinated surface atoms became less well-

resolved as the potential sweep rate increased. At sufficiently fast potential sweep rates 

(e.g. 500 mV s
-1

), the Cu leaching from Au0.30Cu0.70 alloy NFs was effectively suppressed 

while the ECSA remained almost unchanged during multiple cycles of CV scans. In 

Figure 2.4B, we further compared the ECSAs and SAs of various NF samples and the 

solid alloy NPs. Upon the percolation dealloying, the ECSA first increased and then 

decreased as increasing amount of Cu was dissolved and NF-ii exhibited the largest 

ECSA among the NF samples. The SA of the dealloyed NFs, on the other hand, reached 

it maximum value upon initiation of nanoporosity formation and kept decreasing as the 

Cu leaching further proceeded during the nanoporosity evolution. At the initiate stage of 

percolation dealloying, the surface pitting upon Cu atomic dissolution created highly 

abundant undercoordinated surface atoms that contributed to the high SA of the NFs. As 

more Cu was dissolved from the alloy matrix, the ligament domain coarsening drove the 

migration of the undercoordinated surface atoms to form thermodynamically more stable 

local facets. As a consequence, the active sites became less abundant, resulting in 

decreased SA. Therefore, the optimization of the MAs on the spongy NFs requires 
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deliberate tuning of both the ECSA and SA of the NFs, which could be achieved through 

the controlled percolation dealloying of Au-Cu alloy NPs as demonstrated in this work.  

 

Figure 2.4. Electrocatalytic performance of dealloyed NFs for MOR. (A) CV curves of MOR 

on Au0.19Cu0.81 alloy NPs and various dealloyed NFs in 1.0 M methanol and 0.5 M KOH at a 

potential  sweep rate of 10 mV s
-1

. The NF samples labeled as NF-i, NF-ii, NF-iii, and NF-iv 

correspond to the samples obtained through dealloying of Au0.19Cu0.81 alloy NPs in 0.2 M, 0.5 M, 

1.0 M, and 2.0 M Fe(NO3)3 for 2 h, respectively. The sample labeled as NF-v was obtained 

through dealloying of Au0.19Cu0.81 alloy NPs in 2.0 M HNO3 for 1 h. HAADF-STEM images of 

one representative particle for each NF sample are also shown as the insets. All the HAADF-

STEM images share the same scale bar. (B) Cu atomic percentages (quantified by EDS and ICP-

MS), MAs, ECSAs, and SAs of Au-Cu alloy NPs and various dealloyed NFs. The error bars of 

particle compositions represent the standard deviations obtained from 3 samples. The error bars 

of the MAs and ECSAs represent the standard deviations obtained from 5 samples. (C) CA curves 

collected on Au0.19Cu0.81 alloy NPs and various dealloyed NFs for MOR at 0.1 V (vs. SCE) and 

0.3 V (vs. SCE). All CA measurements were carried out in solutions containing 0.5 M KOH and 

1.0 M methanol deoxygenated with N2 and the error bars represent the standard deviations 

obtained from 3 samples.  

 

Among the various dealloyed NF samples, NF-ii exhibited the highest MA and ECSA 

while NF-i exhibited the highest SA (Figure 2.4B). It was recently reported that 

nanoporous Au shells
59

 and Au bowls
65

 overgrown on sacrificial AgCl templates 

exhibited MAs approximately 1.4 and 2.3 times higher than that of the macroscopic 

dealloyed nanoporous Au foams,
9
 respectively, for the electrocatalytic MOR in alkaline 

electrolytes. NF-ii was about 3 times better than the nanoporous Au bowls and 5 times 
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better than the nanoporous Au shells, respectively, in terms of the MAs normalized to Au 

mass. The ECSA of NF-ii was about 2.5 times higher than the largest ECSAs achievable 

on the nanoporous Au shells and bowls.
59,65

 The SAs of the dealloyed spongy NFs, 

macroscopic nanoporous Au foams, and the nanoporous Au shells and bowls, however, 

were all comparable to each other possibly due to similar densities of the 

undercoordinated atoms on their highly curved surfaces.  

To assess the electrocatalytic durability of the spongy NFs, chronoamperometry (CA) 

measurements were carried out at both the onset oxidation potential (0.1 V, vs. SCE) and 

the oxidation peak potential (0.3 V, vs. SCE).  As shown in Figure 2.4C, the oxidation 

currents underwent a fast decay in the first few seconds followed by a much slower decay 

over minutes till reaching a steady-state plateau.  The fast decay of the oxidation currents 

arose from the development of the electrochemical double-layer after a potential was 

applied on the samples till reaching the equilibrium after a few seconds. The slower 

current decay was found to be associated with the surface structural remodeling of the 

NFs during electrocatalytic reactions, which resulted in the activity deterioration to 

certain extent. Although the nanoporous morphology of the Au0.30Cu0.70 NFs (NF-ii) was 

well-preserved with limited amount of Cu further leached before the steady-state current 

was reached, thickening of the ligaments and expansion of pore sizes were clearly 

observed as a consequence of surface atomic migrations. Such surface structural 

remodeling during electrocatalytic reactions, which was previously also observed on 

dealloyed macroscopic Au membranes,
9
 resulted in decrease of both the ECSAs and 

densities of active sites on the NF surfaces. The spongy NFs obtained through 

electrochemical dealloying exhibited significantly lower electrocatalytic activities than 
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their chemically dealloyed counterparts, further indicating that the undercoordinated 

surface atoms located at the catalytic active sites could migrate to form 

thermodynamically more stable but catalytically less active surface structures when a 

potential bias was applied to the NFs.  

2.4 Conclusion 

As demonstrated in this work, the percolation dealloying of Au-Cu alloy NPs is a 

multi-scale structural remodeling process involving nanoscale atomic dissolution and 

migration that lead to the formation of spongy NFs with unique structural characteristics 

highly desired for electrocatalysis. The solid-void bicontinuous NFs consisting of 

hierarchically interconnected nano-ligaments are found to be a unique structure generated 

from percolation dealloying of Au-Cu alloy NPs with Cu at % above the parting limit. 

The nanoporosity evolution during percolation dealloying is synergistically guided by 

two intertwining and competing structural rearrangement processes, ligament domain 

coarsening driven by thermodynamics and framework expansion driven by Kirkendall 

effects, both of which can be maneuvered by controlling the Cu leaching rates during the 

percolation dealloying. The controlled percolation dealloying of Au-Cu alloy NPs 

provides a unique way to systematically tune both the catalytically active surface areas 

and the surface densities of active sites of the dealloyed NFs such that the optimal 

electrocatalytic activity can be achieved. The undercoordinated surface atoms, which 

serve as the catalytically active sites, undergo nanoscale surface migrations over a time 

scale of minutes during electrocatalytic MOR till reaching the steady-state catalytic 

currents, resulting in structural remodeling of the NFs that causes partial deterioration of 

the catalytic activities. Development of new approaches to further stabilizing the surface 
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active sites on the dealloyed NFs through either incorporation of structure-stabilizing 

residual components or deliberate introduction of compositional gradients to the nano-

ligaments is currently underway with the ultimate goal of retaining the superior mass-

specific electrocatalytic activities of the spongy NFs over extended time periods for direct 

methanol fuel cell (DMFC) applications.  
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CHAPTER 3 

RESIDUAL AG ENHANCES BOTH ACTIVITY AND DURABILITY OF 

DEALLOYED AU NANOSPONGE PARTICLES TOWARD 

ELECTROCATALYTIC ALCOHOL OXIDATION 
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3.1 Introduction 

Dealloying of alloys involves intriguing nanoscale structure-remodeling processes that 

profoundly influence the catalytic properties of the dealloyed materials.
1,2

 This is best 

manifested by the percolation dealloying of Au-Ag alloy membranes, which results in 

nanoporous foams consisting of Au-rich nano-ligaments that are interconnected to form a 

unique 3D solid/void bicontinuous, sponge-like architecture.
2-5

 Distinct from the 

catalytically inert bulk Au membranes, the dealloyed nanoporous Au foams exhibit 

superior catalytic activities commensurate with those of oxide-supported ultrasmall Au 

nanocatalysts (< ~2 nm) owing to the high abundance of catalytically active 

undercoordinated atoms on the highly curved ligament surfaces.
2-6

 More recently, the 

percolation dealloying of binary alloys has been further extended from macroscopic 

membranes to particulate nanostructures, controllably introducing nanoporosity to free-

standing or substrate-supported metallic nanoparticles (NPs).
7-14

 Although 

compositionally dominated by the more-noble elements, the dealloyed nanoporous 

materials always contain residual less-noble elements that cannot be completely removed 

by dealloying.
2-14

 Surprisingly, the residual less-noble elements may further enhance the 

catalytic activity of the dealloyed materials toward certain reactions. For example, 

residual Ag can promote the catalytic CO oxidation on dealloyed nanoporous Au foams 

possibly by enhancing the surface adsorption of O2,
2,6

 though the detailed mechanisms 

still remain ambiguous and open to further scrutiny. Despite their remarkable initial 

activities, the dealloyed nanoporous materials inevitably undergo activity deterioration 

over time during catalytic or electrocatalytic reactions due to reduced surface area/mass 

ratio and loss of surface active sites, both of which are caused by ligament 
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coarsening.
15,16

 While it was recently observed by in situ environmental electron 

microscopy that residual Ag could locally stabilize the surface atomic steps (active sites) 

during catalytic CO oxidation,
4
 how to rationally incorporate residual Ag into the Au 

nano-ligaments to optimize both the catalytic activity and durability of dealloyed 

materials still remains an open question.  

Here we show that incorporating Ag into Au-Cu binary alloy NPs substantially 

accelerated Cu leaching while effectively suppressing ligament coarsening during 

nanoporosity-evolving percolation dealloying, providing a unique way to optimize both 

the surface area/mass ratios and specific activities of the dealloyed nanosponge (NS) 

particles for electrocatalytic alcohol oxidation. The residual Ag in the dealloyed NS 

particles greatly enhances the stability of the active sites on the ligament surfaces, 

allowing us to retain the superior catalytic activities over much longer periods than the 

NS particles without residual Ag.  

3.2 Experimental Details 

Materials Polyvinylpyrrolidone (PVP, average MW 58 000), Cu(NO3)2, and AgNO3 

(99.9995% metals basis) were purchased from Alfa Aesar. Chloroauric acid 

(HAuCl4·4H2O), HNO3 (65%), N2H4·3H2O solution (35 wt %), H2SO4 (98%), and 

Nafion perfluorinated resion solution (5 wt%) were purchased from Sigma-Aldrich. 

K2CO3 and 37% formaldehyde were purchased from J.T. Baker. Methanol, ethanol, iso-

propanol, ethylene glycol, NaOH and KOH were purchased from Fisher Scientific. All 

reagents were used as received without further purification. Ultrapure water (18.2MΩ 

resistivity, Milli-Q, Millipore) was used for all the experiments. 

Synthesis of Au@Ag@Cu2O Triple-Layer and Au@Cu2O core-shell 
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Nanoparticles (NPs) Quasi-spherical Au NPs with diameters of 100 + 5.5 nm were 

synthesized by reducing chloroauric acid with formaldehyde at room temperature.
17

 In a 

typical synthesis, 50 mg of K2CO3 was dissolved in 200 mL of water, followed by 

addition of 3 mL of 25 mM HAuCl4. The mixture solution was aged in the dark for 18 h 

before use. Then 1.34 mL of 37 % formaldehyde solution was added into the mixture 

under vigorous magnetic stir (300 rpm). After 30 min, the resulting Au NPs were 

centrifuged (2300 rcf), washed with water, and finally redispersed in 10 mL of water.  

To synthesize Au@Ag core-shell NPs, 9.6 mL of Au colloidal solution was added into 

300 mL of 1 wt % PVP aqueous solution. Then 500 μL of 0.1 M AgNO3 and 2.0 mL of 

0.5 M fresh-prepared ascorbic acid were added into the mixture under magnetic stir. The 

color of the solution changed from brick-red to beige in a few minutes, and the reaction 

mixture was kept stirring for 10 min. The resulting Au@Ag core-shell NPs were 

centrifuged (2200 rpm, 10 min), washed with 2 wt % PVP solution twice, and finally 

redispersed in 10 mL of water. 

Au@Ag@Cu2O triple-layer NPs were synthesized following a protocol we previously 

developed 
18

 with minor modifications. Typically, 9.6 mL of Au@Ag core-shell NPs 

were first introduced into 300 mL of 2 wt% PVP aqueous solution. Then 3.0 mL of 0.1 M 

Cu(NO3)2 solution was added. The reaction mixtures were transferred into an ice bath, 

and then 0.67 mL of 5 M NaOH and 0.3 mL of N2H4·3H2O solution were added under 

magnetic stir. The solution was kept stirring for 10 min, and the NPs were subsequently 

separated from the reaction solution by centrifugation (2000 rpm, 10 min) and 

redispersion in ethanol for storage. 

Au@Cu2O core-shell NPs were synthesized through seed-mediated growth of Cu2O 
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naoshells on Au NP cores.
18

 Briefly, 9.6 mL of Au NPs were introduced into 300 mL of 2 

wt% PVP aqueous solution. Then 3.0 mL of 0.1 M Cu(NO3)2 solution was subsequently 

added. The reaction mixtures were transferred into an ice bath, and then 0.67 mL of 5 M 

NaOH and 0.3 mL of N2H4·3H2O solution  were added under magnetic stir. After 10 min, 

and the NPs were separated from the reaction solution by centrifugation (2000 rpm, 10 

min) and redispersion in ethanol for storage. 

Synthesis of Au-Ag-Cu Trimetallic Alloy and Au-Cu Bimetallic Alloy NPs The 

colloidal Au@Ag@Cu2O triple-layer NPs and Au@Cu2O core-shell NPs were dried at 

room temperature to form dry powders. Au-Ag-Cu trimetallic and Au-Cu bimetallic alloy 

NPs were prepared by annealing the Au@Ag@Cu2O triple-layer NPs and Au@Cu2O 

core-shell NPs, respectively, at 450 °C in a hydrogen flow (50 sccm) under 100 Torr for 

20 min in a tube furnace. After cooling down to room temperature, the samples were 

redispersed in 10 mL of water for storage.  

Synthesis of Nanosponge (NS) Particles through Percolation Dealloying Spongy 

NS particles were fabricated through chemical dealloying upon exposure of the alloy NPs 

to 3 M HNO3 at room temperature under ambient pressure. The dealloyed NS particles 

were separated from the reaction mixtures and finally redispersed in water. Specifically, 

the dealloyed NS particles denoted as NS-T were obtained through dealloying of 

Au0.12Ag0.15Cu0.73 trimetallic alloy NPs in 3.0 M HNO3 for 45 min. The dealloyed NS 

particles denoted as NS-B were obtained through dealloying of Au0.17Cu0.83 bimetallic 

alloy NPs in 3.0 M HNO3 for 45 min. 

Structural Characterization of NPs The morphologies and structures of the NPs 

were characterized by transmission electron microscopy (TEM) using a Hitachi H-8000 
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transmission electron microscope, which was operated at an accelerating voltage of 200 

kV. All samples for TEM measurements were dispersed in ethanol and drop-dried on 400 

mesh carbon-coated-Cu grids (Electron Microscopy Science Inc.). The structures and 

compositions of the nanoparticles were also characterized by Sweepning Electron 

Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) measurements using a 

Zeiss Ultraplus thermal field emission sweepning electron microscope. The samples for 

SEM and EDS measurements were dispersed in ethanol and drop-dried on silicon wafers. 

The sizes of the NPs were analyzed on the basis of SEM images using Nano Measurer 

analysis software (Department of Chemistry, Fudan University, China). The size 

distribution histograms were obtained from more than 100 NPs for each sample. X-ray 

Photoelectron Spectroscopy (XPS) measurements were carried out using a Krato AXIS 

Ultra DLD XPS system equipped with a monochromatic Al Kα source. The samples for 

XPS measurements were all freshly prepared and dried in vacuum before being loaded 

into the XPS chambers. Powder X-ray diffraction (PXRD) patterns were record on a 

SAXSLab Ganesha at the South Carolina SAXS Collaborative (Cu Kα = 1.5406 Å).  

Electrochemical Measurements All the electrochemical measurements were 

performed using a CHI 660E workstation (CH Instruments, Austin, TX) at room 

temperature with a three-electrode system composed of a Pt wire as the auxiliary, a 

saturated calomel electrode (SCE) as the reference, and a glassy carbon electrode (GCE, 

3 mm diameter) as the working electrode.  Typically, the GCE was polished with 0.3 mm 

alumina slurry and followed by washing with water and ethanol before use. Colloidal 

suspensions containing 4.0 µg dealloyed NS particles (NS-T or NS-B) were dropped and 

air-dried on the pretreated GCEs at room temperature, and then 2 μL of Nafion solution 
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(0.2 wt%) was dropped to hold the NPs. To evaluate the electrocatalytic activities of the 

dealloyed NS particles toward alcohol oxidation, cyclic voltammetry (CV) measurements 

were performed in a N2-saturated 0.5 M KOH solution containing 1.0 M methanol, 1.0 M 

ethanol, 1.0 M iso-propanol, or 0.25 M ethylene glycol at a sweep rate of 10 mV s
-1

. 

Electrochemical surface oxide stripping was investigated through CV measurements 

performed in N2-saturated 0.5 M H2SO4 solution at a sweep rate of 5 mV s
-1

. The 

polarization trace was normalized against the Au mass of the NS particles loaded on each 

electrode. The critical potentials for percolation dealloying of the alloy NPs were 

measured by linear sweep voltammetry (LSV) in 0.5 M H2SO4 electrolyte in the potential 

sweep range from 0 V (vs. SCE) to 1.0 V (vs. SCE) at a sweep rate of 5 mV s
-1

. To assess 

the electrocatalytic durability of the dealloyed NS particles, chronoamperometry (CA) 

measurements were carried out at 0.2 V (vs. SCE) in 1.0 M methanol, 1.0 M ethanol, 1.0 

M iso-propanol, or 0.25 M ethylene glycol in the presence of 0.5 M KOH electrolyte over 

2h. 

3.3 Results and Discussions 

Our synthetic approach to the electrocatalytically active NS particles is schematically 

illustrated in Figure 3.1A. To synthesize Au NS particles with residual Ag, we started 

with Au@Ag@Cu2O triple-layer NPs
18

, which transformed into Au-Ag-Cu ternary alloy 

NPs when thermally annealed in a H2 atmosphere at 450 °C. The Au:Ag:Cu 

stoichiometric ratios of the alloy NPs were predetermined by the relative core and shell 

dimensions of their parental triple-layer NPs. Upon exposure to a chemical etchant, such 

as HNO3, the alloy NPs further evolved into Au-rich NS particles as both Cu and Ag 

were selectively dissolved from the alloy matrix. Energy dispersive spectroscopy (EDS) 
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showed that the composition of fully dealloyed NS particles was dominated by Au with 

only trace amount of residual Ag and Cu present in the nano-ligaments. Powder X-ray 

diffraction (PXRD) results further verified the NP structural and compositional 

evolutions during the alloying and dealloying processes. For comparison, NS particles 

without residual Ag were fabricated following essentially the same procedure except that 

Au@Cu2O core-shell NPs were used as the precursors
19

 instead of Au@Ag@Cu2O 

triple-layer NPs.  

EDS results (Figure 3.1B) showed that more than 90 % of Cu was rapidly dissolved 

within 5 minutes upon exposure of Au0.14Ag0.14Cu0.72 ternary alloy NPs to 3.0 M HNO3, 

while the leaching of Ag proceeded more gradually at a slower rate until fully dealloyed 

NS particles (residual Cu and Ag both below 2 at. %) were obtained after 45 minutes. In 

contrast, Cu leaching from Au0.16Cu0.84 binary alloy NPs under identical dealloying 

conditions was drastically slower than that from the ternary alloy NPs (Figure 3.1C). 

Although their total atomic fractions of the leachable less-noble elements were similar, 

the ternary alloy NPs exhibited a significantly higher critical potential for percolation 

dealloying
10

 than the binary alloy NPs, suggesting that the Ag-enhanced Cu leaching was 

essentially a kinetically-driven process rather than a thermodynamic effect. 

Electron microscopy images (Figures 3.1D and 3.1E) showed that the fully dealloyed 

NS particles obtained after dealloying of Au0.14Ag0.14Cu0.72 ternary alloy NPs in 3.0 M 

HNO3 for 45 min (denoted as NS-T) were composed of significantly thinner ligaments 

with smaller average pore sizes in comparison to the fully dealloyed NS particles 

obtained from the Au0.16Cu0.84 binary alloy NPs (denoted as NS-B). 
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Figure 3.1. (A) Schematic illustration of structural transformation upon percolation dealloying. 

Compositional evolution during the percolation dealloying of (B) Au0.14Ag0.14Cu0.72 alloy NPs and 

(C) Au0.16Cu0.84 alloy NPs in 3.0 M HNO3. The error bars represent the standard deviations of 3 

samples. SEM images and (insets) TEM images of (D) NS-T and (E) NS-B. (F) Size distributions 

of NS-T, NS-B, and alloy NPs. (G) CV curves of NS-T and NS-B in 0.5 M H2SO4 at a potential 

sweep rate of 5 mV s
-1

. The currents were normalized against the Au mass loaded on each 

electrode.  
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Both the ternary and binary alloy NPs underwent similar volume shrinkages of ~ 40 % 

upon their transformations into fully dealloyed NS particles (Figure 3.1F).Although NS-T 

and NS-B possessed similar Au masses and pore volumes on a per-particle basis, NS-T 

exhibited a much larger surface area/mass ratio than NS-B owing to its thinner ligaments 

and smaller pore sizes. We used cyclic voltammetry (CV) as an electrochemical 

characterization tool to compare the specific surface areas and surface atomic structures 

of NS-T and NS-B (Figure 3.1G). Because the undercoordinated surface atoms are more 

susceptible to oxidation than their coordinatively saturated counterparts, the characteristic 

potentials for surface oxidation correlate well with the surface atomic coordination 

numbers (ACNs). During the anodic sweeps, both NS-T and NS-B exhibited oxidation 

peaks in the range of 0.90-1.25 V vs. saturated calomel electrode (SCE), signifying the 

oxidation of undercoordinated surface atoms with ACNs of 6 and 7,
19-22

 while the 

oxidation of close-packed surface atoms with ACNs of 8 and 9 occurred above 1.3 V (vs. 

SCE).
19,21-23

 During the cathodic sweep, a sharp reduction peak emerged around 0.94 V 

(vs. SCE), signifying the stripping of the surface oxide layer formed during the anodic 

sweep.
19-23

 Assuming the specific charge associated with Au oxide stripping to be 450 μC 

cm
−2

,
24

 the mass-specific electrochemically active surface area (ECSA) of NS-T was 

calculated to be ~ 80 m
2
 g

-1
, approximately 4 times higher than that of NS-B (~ 22 m

2
 g

-

1
). 

The nanoporosity evolution during percolation dealloying was synergistically 

maneuvered by two interplaying structural remodeling processes, leaching of the less 

noble elements and coarsening of the ligaments. According to the mechanism proposed 

by Erlebacher,
3
 the percolation dealloying of a Au-Cu alloy NP was initiated upon the 
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dissolution of a Cu surface atom, leaving behind a terrace vacancy that was more 

susceptible to further Cu leaching. As the entire terrace was stripped, the coordinatively 

unsaturated Au atoms left behind the dealloying frontiers started to migrate to form 

agglomerated Au-rich local islands that were thermodynamically more stable. As the 

dealloying further proceeded, the interfacial dissolution of Cu atoms and coarsening of 

the Au-rich domains occurred concurrently, gradually evolving into bicontinuous spongy 

structures. While Cu leaching was the major driving force for the nanoporosity formation, 

the coarsening of the Au-rich domains led to thickening of the ligaments and decrease of 

surface area/mass ratios. Both the average pore sizes and ligament thicknesses gradually 

increased accompanied by decrease in overall particle sizes as the percolation dealloying 

of Au-Cu binary alloy NPs proceeded. In contrast, the Au-Ag-Cu ternary alloy NPs 

rapidly evolved into nanoporous particles within a few minutes upon initiation of 

dealloying due to Ag-enhanced Cu leaching, while both the pore sizes and ligament 

thickness were much better maintained as further leaching of both Ag and Cu proceeded. 

The structural evolution observed by TEM, together with the EDS results, provided 

compelling experimental evidence on the crucial roles of Ag in accelerating Cu leaching 

while suppressing ligament coarsening during the percolation dealloying of the ternary 

alloy NPs. 
 

Erlebacher’s working model for nanoporosity evolution also infers that the majority of 

residual less-noble elements should remain alloyed with Au and homogeneously 

distributed in the ligaments, though the less-noble residues may also locally segregate 

around the atomic steps and kinks on the topmost surface atomic layer.
3,4

 Although it was 

difficult to precisely map the spatial distribution of residual Ag and Cu in NS-T using 
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EDS, both the residual Ag and Cu were clearly resolvable by X-ray photoelectron 

spectroscopy (XPS), a sensitive surface elemental analysis technique. While the binding 

energies of the Au 4f peaks remained essentially unchanged with respect to those of bulk 

Au, both the Cu 2p and Ag 3d peaks significantly down-shifted by 0.4 eV and 0.5 eV, 

respectively, with respect to those of bulk Cu and Ag, indicating that the residual Ag and 

Cu remained alloyed with Au
25

. The surface Ag/Au and Cu/Au atomic ratios quantified 

by XPS were similar to the bulk atomic ratios obtained from EDS, also suggesting that 

the residual Ag and Cu remained intermixed with Au rather than being segregated and 

accumulated on the ligament surfaces. Both the surface Ag/Au and Cu/Au atomic ratios 

of NS-T were found to be independent of the probe penetration depth of XPS, further 

confirming the intermix of residual Ag and Cu with Au. Without Ag, the residual Cu also 

remained alloyed with Au when Au-Cu binary alloy NPs were fully dealloyed.  

While a glassy carbon electrode (GCE) itself was electrocatalytically inert, the 

dealloyed NS particles loaded on a GCE exhibited remarkable electrocatalytic activities 

toward a series of alcohol oxidation reactions at room temperature, including the 

methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), iso-propanol 

oxidation reaction (i-POR), and ethylene glycol oxidation reaction (EGOR). CV results 

clearly showed that NS-T were electrocatalytically more active than NS-B (Figures 3.2A-

3.2D), exhibiting lower onset and peak oxidation potentials and higher peak currents 

during the anodic sweeps. A second oxidation peak emerged during the cathodic sweeps, 

signifying the oxidation of surface-adsorbed carbonaceous species not fully oxidized 

during the previous anodic sweeps.
26,27

 We calculated the specific activities, which were 

intimately tied with the nature and density of surface active sites, by normalizing the 
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mass activities at the forward sweep peak potentials against the ECSAs. NS-T exhibited a 

larger ECSA, higher specific activities, and thereby significantly greater mass activities 

than NS-B (Figure 3.2E). 

 

Figure 3.2. CV curves of NS-T and NS-B in 0.5 M KOH electrolyte solutions containing (A) 1 

M methanol, (B) 1 M ethanol, (C) 1 M iso-propanol, and (D) 0.25 M ethylene glycol. The 

potential sweep rate was 5.0 mV s
-1

. CV curves in panels A-C show the results of 1
st
 sweep cycle 

on each sample and the CV curves in panel D show the results of 10
th
 sweep cycle. (E) Mass 

activities and specific activities of NS-B and NS-T. The error bars represent the standard 

deviations of 5 samples.  

 

The presence of Ag drastically changed the evolutions of ECSAs and specific 

activities during the percolation dealloying. The ECSA first increased upon nanoporosity 

formation and then decreased due to ligament coarsening as the percolation dealloying of 

Au0.16Cu0.84 binary alloy NPs proceeded. Meanwhile, the specific activity kept decreasing 

due to the surface restructuring driven by ligament coarsening. As a consequence, the 

maximal mass activity was achieved on the partially dealloyed NS particles. During the 

percolation dealloying of Au0.14Ag0.14Cu0.72 ternary alloy NPs, however, the specific 
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activity continuously increased while the ECSA were well-maintained in range of 65-80 

m
2
 g

-1
. The density of the active sites kept increasing as the co-leaching of Au and Cu 

proceeded and the active sites were well preserved by the residual Ag due to the 

suppression of ligament coarsening. Therefore, the fully dealloyed NS-T particles 

exhibited a higher mass activity than the partially dealloyed counterparts. 

The residual Ag could stabilize the surface active sites during not only the 

nanoporosity-evolving percolation dealloying but also the electrocatalytic reactions. 

Chronoamperometry (CA) results showed that the catalytic activities of NS-T were 

significantly more robust than that of NS-B (Figures 3.3A-3.3D). Interestingly, for NS-T-

catalyzed EGOR, the catalytic current even increased first before it started to decay till 

reaching the steady state current, whereas the current kept decreasing on NS-B. Multiple 

cycle CV results agreed with the CA results very well. The catalytic performances before 

and after CA measurements (0.2 V vs. SCE for 2 h) were further evaluated by CV The 

ratios of the final anodic peak currents after CA measurements, jp,f, to the initial anodic 

peak current before CA measurements, jp,i, were summarized in Figure 3.3E. While 

significant activity deterioration was observed on NS-B, the catalytic activities of NS-T 

were much better preserved during the reactions. The enhanced catalytic durability 

observed on NS-T essentially arose from the preservation of active sites and ECSA due to 

the presence of residual Ag. The partially dealloyed Au0.86Ag0.09Cu0.05 NS particles with a 

higher fraction of residual Ag exhibited a similar catalytic durability but significantly 

lower mass activity toward MOR in comparison to the fully dealloyed NS-T, indicating 

that the residual Ag atoms stabilized the surface active sites rather than serving as the 

active sites themselves.  
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Figure 3.3. CA curves (at 0.20 V vs. SCE) of NS-T and NS-B in 0.5 M KOH electrolyte 

solutions containing (A) 1 M methanol, (B) 1 M ethanol, (C) 1 M iso-propanol, and (D) 0.25 M 

ethylene glycol. (E) jp,f / jp,i for NS-B and NS-T. The error bars represent the standard deviations 

of 5 samples.  

 

We further performed CV measurements at different potential sweep rates, v, for the 

alcohol oxidation reactions. The ratio of forward (anodic) sweep peak current to 

backward (cathodic) sweep peak current, jf/jb, which reflected the tolerance of the 

catalysts to the carbonaceous species accumulation, increased with v, suggesting that fast 

potential sweep favored oxidation of the surface adsorbed alcohols during the anodic 

sweeps. The highly curved surfaces of the nano-ligaments were enclosed by a mixture of 

surface atoms with various ACNs, thereby exhibiting highly heterogeneous catalytic 

activities from site to site.  In addition, the molecular diffusion rates in the interior 

regions of the NS particles may be drastically different from those on the outer surfaces 

due to nanoconfined cage effects.
28

 The anodic peak current was far from being 

proportional to either v or v
1/2

, suggesting that the electrocatalytic reactions on the 

dealloyed NS particles may involve multiple site-specific electron transfer and molecular 
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diffusion rates and thereby are much more complicated than a simple diffusion- or 

surface-controlled process on a planar electrode surface.  

3.4 Conclusion 

The idea of incorporating a third non-leachable, noble element into the bulk of binary 

alloys to modify the dealloying behaviors of the alloys dates back to early 1990s.
29

 

Addition of a small concentration of arsenic into Cu-Zn brasses effectively suppressed 

the dealloying due to the pinning of mobile Cu atomic step edges by surface-segregated 

arsenic.
29

 Similarly, small amounts of Pt added to the bulk of Ag-Au alloy membranes 

also accumulated around the surface atomic step edges to stabilize the undercoordinated 

atoms during percolation dealloying.
30

 However, as a leachable less-noble element, Ag 

plays unique roles distinct from those of the non-leachable arsenic and Pt in the bulk 

alloys during the nanoporosity-evolving percolation dealloying. As demonstrated here, 

the co-leaching of Ag and Cu from Au-Ag-Cu ternary alloy NPs allows us to accelerate 

Cu leaching while suppressing ligament coarsening, resulting in dealloyed NS particles 

with substantially larger specific surface areas and higher surface active site densities 

than their Ag-less counterparts. The residual Ag in the fully dealloyed NS particles also 

stabilizes the active sites and the nanoporous architectures, thereby greatly enhancing the 

durability of electrocatalytic activities toward alcohol oxidation reactions. This work 

sheds light on the underlying roles of the less-noble residues that are crucial to the 

electrocatalytic competence of dealloyed metallic nanostructures, providing insightful 

knowledge that guides the rational optimization of electrocatalysis for fuel cell 

applications. In a broader context, the residual Ag exists not only in dealloyed Au 

nanoporous foams or NS particles, but also in a large variety of catalytically active Au 
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nanostructures, such as nanocages,
31

 nanorods,
32

 surface roughened NPs,
22

 and high-

index faceting nanopolyhedra,
21,33

 due to the involvement of Ag in their shape-controlled 

syntheses. However, the underlying contributions of the residual Ag to the catalytic 

performances of these Au nanostructures still remain largely unexplored. The insights 

gained through this work provide important implications that germinate future work 

toward thorough understanding of the crucial roles of residual less-noble elements 

underpinning the intriguing catalytic behaviors of noble metal nanocatalysts. 
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CHAPTER 4 

SURFACE ATOMIC COORDINATION MATTERS: SELECTIVE 

ELECTROCATALYTIC ACTIVITY ON DEALLOYED NANOSPONGE 

PARTICLES
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4.1 Introduction 

Dealloying, which involves the selective dissolution of less-noble components from a 

metallic alloy matrix and concurrent structural rearrangements of the more-noble metals, 

provides a unique and versatile pathway to tailor the structures and compositions and 

thereby fine-tune the properties of the dealloyed materials.
1-5

 The percolation dealloying 

of bulk Au/Ag or Au/Cu alloy membranes has been of particular interest, which results 

in the formation of nanoporous Au sponge composed of three-dimensional bicontinuous 

networks of interconnected Au-rich nanoligaments.
1,6

 In striking contrast to their 

chemically inert bulk counterparts, the dealloyed nanoporous Au foam exhibits 

remarkably catalytic activities comparable to those of ultrasmall sub-5 nm Au 

nanoparticles (NPs) as a consequence of the high abundance of coordinatively 

unsaturated atoms located on the highly curved nanoligament surfaces, serving as 

catalytically active sites toward a variety of reactions.
1,2,4

 
7
 

     While dealloyed bulk systems exhibit promising performances, the percolation 

dealloying of alloys has been already pushed forward to particulate nanostructures, 

which enables controlled introduction of nanoporosity to metallic NPs with well-defined 

compositional (e.g., overall and surface/bulk ratios of metal A and B) and morphological 

(e.g., particle size and shape) configurations,
8-14

 and eventually realizes the rational 

design of dealloyed NPs with unique physicochemical properties (highly efficient 

catalytic activities). Great success in systematically tuning the density of active sites on 

the ligament surfaces of Au-dominated dealloyed nanosponge particles (DNSPs) toward 

performance optimization has been achieved through kinetic control over percolation 

dealloying of alloy NPs and the active sites and structures could be well preserved by 
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incorporation of structure-stabilizing residual components into the dealloyed NPs.
15-17

 

Equally important to the catalytic activity and durability is the selectivity of Au 

nanocatalyst toward particular reaction of interest, which essentially depends on 

undercoordination environments on the local surface. How to optimize the 

electrocatalytic selectivity of Au nanocatalyst, nevertheless, remains a big challenge. 

While numerous studies have been focusing on the potential catalytic activity for 

partially redox reactions of supported ultrasmall Au NPs or Au clusters,
18-21

 neither of 

which possesses the desired surface structures to study the catalytic selectivity of the Au 

nanocatalyst. In addition, strong synergistic effects among the interface to the supports, 

defect sites, and functional groups on the support as well as reaction conditions on the 

overall catalytic activity have limited the understanding of the underlying intrinsically 

catalytic selectivity of the Au nanocatalyst.
22-24

 Much effort has been recently made to 

uncover the relationship between catalytic performance and atomic-level surface 

structure over support-free polyhedral Au NPs enclosed by specific types of well-defined 

low-index and high-index facets with different surface atomic coordination numbers,
25-29

 

but few attention has been paid on their surface-correlated catalytic selectivity. Building 

detailed correlation between the surface structure atomic coordination and the catalytic 

selectivity that underpins the Au DNSPs, seems unexceptional and has not been 

investigated so far. In contrast to the achievement in fine-tuning of surface atomic-level 

structure through facet control, the lack of precise control over the atomic coordination 

on Au DNSPs surface has been a huge barrier to quantitatively correlate the catalytic 

selectivity with the surface coordinations due to their substantially more complicated 

surface structures based on conventional percolation dealloying that typically started 
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from homogenous alloy NPs.  

Here we endeavor to gain quantitative insights into the facet-selectivity relationship of 

Au NPs with well-defined facets using the room temperature electrocatalytic glucose 

oxidation as a model reaction,
30

 and then further push the atomic-level surface structure 

control over Au DNSPs through percolation dealloying of Au-Cu bimetallic nanospheres 

with interior compositional gradients. Au-Cu bimetallic NPs could selectively transform 

into fully hollow nanostructures or partially porous structures with solid Au cores and 

interconnected ligament shells, which possess different coordination environments on the 

surface, making it possible to study the catalytic selectivity of Au DNSPs.  

4.2 Experimental Details 

Materials Polyvinylpyrrolidone (PVP, average MW 58 000), (1-

Hexadecyl)trimethylammonium chloride (CTAC, 96%) chloroauric acid (HAuCl4·4H2O), 

copper nitrate hydrate (Cu(NO3)2·3H2O), and tetraethylene glycol (TEG) were purchased 

from Alfa Aesar. Sodium borohydride (NaBH4, 99%), L-ascorbic acid (AA, 99.5%), and 

hydrochloric acid (HCl, 37%), D-glucose, hydrazine solution (N2H4·3H2O 35 wt %), 

nitric acid (HNO3 65%), sulfuric acid (H2SO4 98%), and Nafion perfluorinated resion 

solution (5 wt%) were purchased from Sigma-Aldrich. Potassium carbonate (K2CO3) and 

formaldehyde (37 wt%) were purchased form J.T. Baker. Sodium hydroxide (NaOH), 

potassium nitrate (KNO3), and potassium hydroxide (KOH) were purchased from Fisher 

Scientific. (1-Hexadecyl)trimethylammonium bromide (CTAB, > 98.0 %), D-

gluconolactone, D-sucrose, and D-fructose were purchased from TCI America. D-

glucaric acid potassium salt was purchased from MB Biomedicals, LLC. All reagents 

were used as received without further purification. Ultrapure Milli-Q water with a 
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resistivity of 18.2 MΩ (Millipore) was used for all the experiments. 

Synthesis of Au Elongated Tetrahexahedral (ETHH) Nanoparticles Au ETHH 

nanoparticles were prepared following a reported seed-mediated protocol with minor 

modifications. Colloidal Au seeds were first prepared by the reducing HAuCl4 with 

NaBH4 in the presence of CTAB. In typical, 0.60 mL of ice-cold, freshly prepared NaBH4 

(10 mM) were quickly injected into a solution composed of CTAB (9.75 mL, 0.10 M) 

and HAuCl4 (0.25 mL, 10 mM) under vigorous magnetic stirring (1000 rpm). The mixed 

solution was stirred for 1 min, left undisturbed for 2 h and then diluted by 50-fold with 

CTAB (0.10 M) to obtain the seed solution for the subsequent particles growth. The 

growth solution was prepared by adding HAuCl4 (2.0 mL, 10 mM), AgNO3 (0.40 mL, 10 

mM), HCl (0.80 mL, 1.0 M), and AA (0.32 mL, 0.10M) into a CTAB (40.00 mL, 0.10 M) 

solution in succession. After gently mixing the growth solution for 30 s, the growth of Au 

ETHH nanoparticles was initiated by adding 0.1 mL of the Au seed solution. The reaction 

solution was gently mixed for 30 s immediately after the addition of Au seeds and then 

left undisturbed at 30 
o
C for overnight. The obtained Au ETHH nanoparticles were 

washed with water twice and finally redispersed in 5.0 mL of water. 

Synthesis of Au Trisoctahedral (TOH) Nanoparticles Au TOH nanoparticles were 

prepared following a previous protocol based on seed-mediated growth. Colloidal Au 

seeds were prepared by the reducing HAuCl4 with NaBH4 in the presence of CTAC. In a 

typical procedure, 0.30 mL of ice-cold, freshly prepared NaBH4 (10 mM) were quickly 

injected into a solution composed of CTAC (10.00 mL, 0.10 M) and HAuCl4 (0.25 mL, 

10 mM) under magnetic stir (1000 rpm). The mixed solution was stirred for 1 min, left 

undisturbed for 2 h and then diluted by 1000-fold with CTAC (0.10 M) to obtain the Au 
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seed solution for the subsequent particles growth. The growth solution was prepared by 

sequentially adding HAuCl4 (0.50 mL, 10 mM) and AA (1.0 mL, 0.10 M) into a CTAC 

(10.00 mL, 0.10 M) solution. After gently mixing the growth solution for 30 s, the growth 

of Au TOH nanoparticles was initiated by adding 0.015 mL of the Au seed solution. The 

reaction solution was gently mixed for 30 s immediately after the addition of Au seeds 

and then left undisturbed at room temperature for 4 h. The obtained Au TOH 

nanoparticles were washed with water and finally redispersed in 5.0 mL of water.  

Synthesis of Au@Cu2O Core-shell Nanoparticles Quasi-spherical Au nanoparticles 

(QSNPs) were first synthesized by reducing HAuCl4 with formaldehyde at room 

temperature. In a typical procedure, 50 mg of K2CO3 was dissolved in 200 mL of water, 

followed by addition of 3 mL of 25 mM HAuCl4. The mixture solution was aged in the 

dark for 18 h before use. Then 1.34 mL of 37 % formaldehyde solution was added into 

the mixture under magnetic stir (300 rpm). After 30 min, the resulting Au QSNPs were 

centrifuged, washed with water, and redispersed in 10 mL of water.  

Then 9.6 mL of Au QSNPs was introduced into 300 mL of 2 wt% PVP aqueous 

solution. 3.6 mL of 0.1 M Cu(NO3)2 was subsequently added. The reaction mixture was 

transferred into an ice bath, and then 0.67 mL of 5 M NaOH and 0.3 mL of N2H4·3H2O 

solution were added in successive under magnetic stir. The solutions were kept stirring 

for 15 min, and the obtained Au@Cu2O core-shell nanoparticles were separated from the 

reaction solution by centrifugation (2000 rpm, 10 min) washed with ethanol and 

redispersed in 10 mL ethanol. 

Synthesis of Au@Cu Core-shell and Au-Cu Alloy Nanoparticles Au@Cu core-

shell and Au-Cu alloy nanoparticles were prepared through a polyol-assisted growth 



www.manaraa.com

95 
 

method. Typically, 1.0 mL of Au@Cu2O core-shell NPs was added into 20.0 mL TEG 

containing 0.1 g PVP. Au@Cu core-shell, Au-Cu alloy with compositional gradients 

(Alloy-G), and homogenous Au-Cu alloy (Alloy-H) nanoparticles were obtained by 

heating the mixture at 180 
o
C, 240 

o
C, and 300 

o
C for 30 min, respectively. The obtained 

nanoparticles were washed with ethanol five times, and finally redispersed in 1.0 mL of 

ethanol. 

Synthesis of Dealloyed Au NPs and Au Nanosponges Dealloyed Au NPs, Au 

nanosponge particles with solid Au cores and nanoligament shells (DNSPs-G), and Au 

nanosponges with voids throughout the entire particles (DNSPs-H) were obtained 

through chemical etching upon exposure of 1.0 mL of the Au@Cu core-shell NPs, Alloy-

G, and Alloy-H NPs to 3.0 mL of 3.0 M HNO3 at room temperature for 45 min, 

respectively. The resulting dealloyed particles were washed by water three times and 

finally redispersed in 1 mL of water. 

Structural Characterization of NPs The morphologies and structures of the NPs 

were characterized by transmission electron microscopy (TEM) using a Hitachi H-8000 

transmission electron microscope, which was operated at an accelerating voltage of 200 

kV. All samples for TEM measurements were dispersed in ethanol and drop-dried on 300 

mesh Formvar/carbon-coated-Cu grids (Electron Microscopy Science Inc.). The 

structures and compositions of the NPs were also characterized by Scanning Electron 

Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) measurements using a 

Zeiss Ultraplus thermal field emission scanning electron microscope. The samples for 

SEM and EDS measurements were dispersed in ethanol and drop-dried on silicon wafers. 

The sizes of the NPs were analyzed on the basis of TEM images using Nano Measurer 
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analysis software (Department of Chemistry, Fudan University, China). The size 

distribution histograms were obtained from more than 100 NPs for each sample. XPS 

measurements were carried out using a Krato AXIS Ultra DLD XPS system equipped 

with a monochromatic Al Kα source. The samples for XPS measurements were all 

freshly prepared and dried in vacuum before being loaded into the XPS chambers. 

Powder X-ray diffraction (PXRD) patterns were record on a SAXSLab Ganesha at the 

South Carolina SAXS Collaborative (Cu Kα = 1.5406 Å). Inductively coupled plasma-

mass spectrometry (ICP-MS) measurements were performed using a Finnigan 

ELEMENT XR double focusing agnetic sector field inductively coupled plasma-mass 

spectrometer (SF-ICP-MS). 0.2 mL min-1
 Micromist U-series nebulizer (GE, Australia), 

quartz torch and injector (Thermo Fisher Scientific, USA) were used for sample 

introduction. Sample gas flow was at 1.08 mL min-1. The forwarding power was 1250 W. 

The sample for ICP-MS measurements were prepared by adding 1 mL of nitric acid and 3 

mL of hydrochloric acid into Teflon digestion vessels containing the samples. The 

samples were digested using hot block at 180 
o
C for 4 h. The digestates were brought to 

50 mL with water. A 3-point calibration curve was used for Cu and Au. The calibration 

range was from 50 to 600 ppb. The R2 values for the initial calibration curves were greater 

than 0.995. 

Electrochemical Measurements All the electrochemical measurements were 

performed using a CHI 660E workstation (CH Instruments, Austin, TX) at room 

temperature with a three-electrode system composed of a Pt wire as the auxiliary, a 

saturated calomel electrode (SCE) as the reference, and a glassy carbon electrode (GCE, 

3 mm diameter) as the working electrode.  Typically, the GCE was polished with 0.3 mm 
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alumina slurry and followed by washing with water and ethanol before use. Colloidal 

suspensions containing certain amount of Au TOH NPs, Au ETHH NPs, and Au NPs 

etched from Au@Cu core-shell NPs, DNSPs-G and DNSPs-H were dropped and air-

dried on the pretreated GCEs at room temperature, and then 2 μL of Nafion solution (0.2 

wt%) was dropped to hold the NPs. To evaluate the selectively electrocatalytic activities 

of Au NPs toward glucose oxidation, cyclic voltammetry (CV) measurements were 

performed in a N2-saturated 0.5 M KOH solution containing 6.0 mM glucose, 6.0 mM 

gluconolactone, 6.0 mM glucaric acid, 6.0 mM sucrose, and 6.0 mM fructose at a 

potential sweep scan rate of 50 mV s
-1

, respectively. Electrochemical surface oxide 

stripping was investigated through CV measurements performed in N2-saturated 0.5 M 

H2SO4 solution at a scan rate of 5 mV s
-1

. The polarization trace was normalized against 

the Au mass of the particles loaded on each electrode. The linear sweep voltammetry 

(LSV) of Au-Cu bimetallic NPs were measured in 1.0 M KNO3 electrolyte in the 

potential scan range from 0 V to 0.8 V (vs. SCE) at a scan rate of 5 mV s
-1

. To assess the 

electrocatalytic durability of Au TOH NPs, Au ETHH NPs, DNSPs-G and DNSPs-H, 

chronoamperometry (CA) measurements were carried out at 0.24 V or 0.40 V (vs. SCE) 

depending on their peak potentials for glucose oxidation in 6.0 mM glucose in the 

presence of 0.5 M KOH electrolyte for 2 h. 

4.3 Results and Discussions 

As illustrated in Figure 4.1A, glucose can be selectively oxidized to gluconolactone 

through a 2-electron process or glucaric acid through a 4-electron process.
31-34

 In this 

work, Au trisoctahedral (TOH) and elongated tetrahexahedral (ETHH) NPs are firstly 

selected as representative model nanostructures due to their characteristic surface atomic 
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coordination numbers (SACNs). The detailed atomic-level surface structures of the Au 

TOH and THH NPs have been fully characterized by using a series of electron 

microscopy techniques as described in our previous publication,
27

 the surfaces of Au 

TOH and Au ETHH NPs were dominated by [221] and [730] facets with a high fraction 

of surface undercoordination numbers of 7 and 6, respectively.  

 

 

Figure 4.1. Selective electrocatalytic oxidation of glucose on high-index faceting polyhedral 

NPs. (A) Schematic illustration of selective oxidation of glucose to form gluconolactone and 

glucaric acid, respectively. CV curves of electrochemical surface oxide stripping of (B) Au TOH 

NPs and (C) Au ETHH NPs in 0.5 M H2SO4 at a potential sweep rate of 5 mV s
−1

. The insets 

show the geometric models (left insets) and SEM images of the NPs (right insets). The surfaces 

of TOH and ETHH NPs are enclosed by high-index {221} and {730} facets, respectively. CV 

curves of (D) Au TOH NPs and (E) Au ETHH NPs in deoxygenated solutions containing 6.0 mM 

glucose and 0.5 M KOH electrolyte at a potential sweep rate of 50 mV s
−1

. The insets of panels D 

and E show the distribution of the surface atomic coordination numbers (SACNs) for the {221} 

and {730} facets, respectively.  

 

We further used cyclic voltammetry (CV) as an electrochemical tool to characterize 

the atomic-level surface structures and electrocatalytically active surface areas (ECSAs) 
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of the Au TOH and ETHH NPs because of well correlation between the SACNs and the 

characteristic potentials for surface oxidation.
35-38

 As shown in Figures 4.1B and 4.1C, 

Au TOH and ETHH NPs exhibited oxidation peaks at ~1.19 V vs. saturated calomel 

electrode (SCE) and ~ 1.05 V vs. SCE during the anodic sweeps, signifying the oxidation 

of undercoordinated surface atoms with SACNs of 7 and 6,
35,37,38

respectively, whereas 

the oxidation of close-packed surface atoms with SACNs of 8 and 9 on the surfaces of 

Au quasi-spherical NPs (QSNPs) occurred above 1.3 V vs. SCE. During the cathodic 

sweeps, the reduction peak around 0.90 V (vs. SCE) signified the electrochemical 

stripping of the surface oxide layers formed in the previous anodic scans. Assuming the 

specific charge associated with Au oxide stripping to be 450 μC cm
-2

,
39

 the mass-specific 

ECSAs of the Au TOH, ETHH NPs, and Au QSNPs were estimated to be ~ 0.56, 0.85 

and 0.49 m
2
 g

-1
, respectively.  

We systematically studied the electrocatalytic activities of the Au TOH, Au ETHH, 

and Au QSNPs NPs for glucose oxidation reaction (GOR). As shown in Figures 4.1 D 

and 4.1E, the Au TOH and ETHH display superior catalytic performances for glucose 

oxidation, while both naked glassy carbon electrode (GCE) and Au QSNPs (SACNs of 8 

and 9) were electrochemically inert (Figure 4.2), suggesting the electrocatalytic activities 

essentially originate from the surface under-coordinated atoms. Whereas the Au TOH 

and ETHH display drastically distinct characteristics in the CV curves, the anodic peaks 

of Au TOH and ETHH NPs emerge at ~ 0.24 V (vs. SCE) and ~ 0.40 V (vs. SCE), 

respectively. Another oxidation peak during the cathodic sweeps resulted from the 

further oxidation of surface-adsorbed carbonaceous species not fully oxidized during the 

previous anodic sweep.
40,41

 The result indicates that the electrocatalytic oxidation of 
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glucose on Au TOH and ETHH NPs probably proceeds along different pathways to 

selectively form alternate products, which was intimately tied to the distribution of 

undercoordinated surface atoms (the insets in Figures 4.1D and 4.1E).  

 

Figure 4.2. (A) SEM image of Au quasi-spherical nanoparticles (QSNPs) enclosed by low-index 

{111} and {100} facets. The inset shows the geometric model of an individual QSNP. (B) CV 

curve of electrochemical surface oxide stripping of Au QSNPs in 0.5 M H2SO4 at a potential 

sweep rate of 5 mV s
−1

. (C) CV curves of a glassy carbon electrode (GCE) loaded with 4 µg of 

Au QSNPs and a GCE in a deoxygenated solution containing 6.0 mM glucose and 0.5 M KOH 

electrolyte at a potential sweep rate of 50 mV s
-1

. 

 

We further studied the electrocatalytic oxidation of gluconolactone and glucaric acid 

to clarify the oxidation products for GOR of the Au TOH and ETHH NPs (Figure 4.3). It 

is found that Au ETHH NPs can further catalyze the oxidation of gluconolactone at 0.40 

V (vs. SCE), while Au TOH NPs demonstrate no activities for both gluconolactone and 

glucaric acid oxidations. The results indicated that the main product for GOR catalyzed 

by Au TOH NPs is gluconolactone, whereas complete oxidation of glucose into glucaric 

acid occurred on Au ETHH NPs. The observed facet-dependent catalytic selectivity 

correlated well with the characteristic distributions of undercoordinated surface atoms on 
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various facets. However, the catalytic activities of Au TOH and ETHH NPs are 

dramically restricted due to their limited ECSAs.  

 
 

Figure 4.3. CV curves of Au TOH NPs and ETHH NPs in deoxygenated solutions of containing 

6.0 mM gluconolactone or 6.0 mM glucaric acid in 0.5 M KOH electrolyte at a potential sweep 

rate of 50 mV s
−1

.  

 

Using percolation dealloying less-noble metals from alloys to form porous Au 

structures, the ECSAs can be greatly optimized compared with their solid counterparts.
17

 

Here we controllably fabricated spongy-like Au NPs with characteristic SACNs through 

percolation dealloying of Au-Cu bimetallic NPs with varying interior compositional 

gradients. The Au-Cu bimetallic NPs were first obtained by polyol-mediated reduction of 

the colloidal Au@Cu2O core-shell NPs in tetraethylene glycol (TEG). The Cu/Au 

stoichiometric ratios of the alloy NPs are predetermined by the relative core and shell 

dimensions of the parental Au@Cu2O core-shell NPs,
42

 while the intraparticle 

compositional gradient of the bimetallic NPs could be fine tailored by the reaction 

temperature. We used scanning electron microcopy (SEM), energy-dispersive 

spectroscopy (EDS), transmission electron microscopy (TEM), powder X-ray diffraction 



www.manaraa.com

102 
 

(PXRD), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray 

photoelectron spectroscopy (XPS) to fully characterize the structures and compositions 

of the Au-Cu bimetallic NPs to illustrate the structural evolutions of Au@Cu2O core-

shell NPs upon thermal heating. As shown in Figure 4.4A, Au@Cu core-shell NPs with 

distinct core and shell heterostructures obtained by EDS elemental mapping were 

collected at 180 
0
C. When the reaction temperature increases to 240 

0
C, the Au and Cu 

atoms start to interdiffuse to form Au-Cu alloy NPs with compositional gradient (Au-rich 

alloy core and Cu-rich alloy shell), which are denoted as Alloy-G NPs (Figure 4.4B). 

Further increasing the temperature to 300 
0
C leads to the formation of Au-Cu alloy NPs 

with homogenous Au and Cu distributions (Figure 4.4C, denoted as Alloy-H NPs). TEM 

images also clearly demonstrate the contrast between the core and the shell gradually 

fade away and completely disappeared with the increase of reaction temperature, 

meanwhile the overall particle sizes significantly shrank. Figure 4.4D shows PXRD of 

the Au-Cu bimetallic NPs. Pure Au and Cu phases were determined for Au@Cu core-

shell NPs, while a broad alloy feature accompanied with a tiny pure Au diffraction peak 

for Alloy-G NPs as a consequence of compositional gradients and well-defined alloy 

peaks of Alloy-H NPs were observed, respectively. We used linear sweep voltammetry 

(LSV) to study the electrochemical dealloying behaviors of Au-Cu bimetallic NPs 

(Figure 4.4E). Although their Au/Cu atomic ratios were the same, the onset potential for 

Cu oxidation from alloy NPs was positively shifted with respect to that of Au@Cu core-

shell NPs because the Cu was stabilized by incorporating into Au matrix, and Alloy-H 

NPs exhibited a significantly higher critical potential to be oxidized.  
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Figure 4.4. Au-Cu bimetallic NPs with controlled intraparticle compositional gradient. 

Cartoons, SEM images, and EDS elemental maps of (A) Au@Cu core-shell NPs, (B) Au-Cu 

alloy NPs with internal gradient (Alloy-G NPs), and (C) Au-Cu homogenous alloy NPs (Alloy-H 

NPs). (D) PXRD patterns of Au@Cu core-shell NPs, Alloy-G NPs, and Alloy-H NPs. The 

standard patterns for face center cubic (fcc) Au and Cu bulk materials are also shown for 

comparison. The PRXD patterns are offset for clarity. (E) Linear sweep voltammetry (LSV) 

curves of Au@Cu core-shell NPs, Alloy-G NPs, and Alloy-H NPs in 0.5 M KNO3 solution at a 

potential sweep rate of 5.0 mV s
-1

. 

 

The results of element analysis based on EDS line scans further demonstrated the 

structural evolutions of the various Au-Cu bimetallic NPs (Figures 4.5A-4.5C). The Cu 

atomic ratios of the various bimetallic NPs measured from the EDS kept unchanged and 

were in good agreement with those quantified by ICP-MS (Figure 4.5D). XPS was used 

to characterize surface structures and compositions of the Au-Cu bimetallic NPs (Figure 

4.6). For Au@Cu core-shell NPs, the binding energies of the Cu 2p peaks remained 

essentially unchanged with respect to those of bulk Cu, while Au 4f peaks up-shifted by 

~ 0.45 eV with respect to those of bulk Au, accompanied by significant peak broadening 

caused by alloying of Au with Cu. With the interdiffusion of Au and Cu, a slight up shift 
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of ~ 0.2 eV of Au 4f peaks and almost no peak shift of Cu 2p peaks were observed on 

Alloy-G. While the Cu 2p XPS peaks of Alloy-H exhibited pronounced down-shift by 

∼0.6 eV with respect to those of the bulk Cu, no shift for Au 4f peaks was tested. The Cu 

atomic ratio quantified by XPS was much higher than that obtained from EDS for 

Au@Cu core-shell NPs due to fully covered pure Cu on the particle surface. The Cu 

atomic ratio of Alloy-G decreased but still higher than the bulk Cu atomic ratio, 

verifying their Cu-rich shell heterostructures. A similar Cu content for Alloy-H NPs 

quantified by XPS and EDS signified its homogenous structure.  

 

 
 

Figure 4.5. EDS of (A) Au@Cu core-shell NPs, (B) Alloy-G NPs, and (C) Alloy-H NPs. The 

insets show SEM images of individual NPs and the spatial elemental distributions of Au and Cu 

obtained from EDS line scan measurements. (D) Cu atomic percentages quantified by EDS and 

ICP-MS of Au@Cu core-shell NPs, Alloy-G NPs, and Alloy-H NPs. 
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Figure 4.6. XPS of (A) Au 4f and (B) Cu2p regions of Au@Cu core-shell NPs, Alloy-G NPs, 

and Alloy-H NPs. The vertical dash lines indicate the peak positions of standard bulk Au and Cu. 

(C) The surface Cu atomic percentages quantified by XPS and the bulk Cu atomic percentages 

quantified by EDS of Au@Cu core-shell NPs, Alloy-G NPs, and Alloy-H NPs.  

 

Upon exposure to chemical etchants, the Au-Cu bimetallic NPs exhibited structure-

dependent compositional and structural evolutions. As shown in Figure 4.7A, the surface 

rough spherical Au NPs were obtained by treating Au@Cu core-shell NPs with 3.0 M 

HNO3 for 45 min at room temperature. Alloy-G evolved into nanosponges (denoted as 

DNSPs-G in Figure 4.7B) with solid Au cores surrounded by nanoporous shells upon 

percolation dealloying, whereas Alloy-H transformed into well-defined nanosponges 
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with porosity throughout the entire particles (denoted as DNSPs-H in Figure 4.7C). 

PXRD, EDS, and ICP-MS all consistently showed that the dealloyed NPs was consisted 

of Au, and the overall particle size obviously shrank upon the percolation dealloying, 

while clearly resolvable down-shifted Cu 2p XPS peaks for both Au DNSPs indicated 

residual Cu remained alloyed with Au.
43

 

 

Figure 4.7. Morphologies and surface structures of dealloyed nanosponge particles (DNSPs). 
TEM images of (A) Au NPs obtained by etching the Au@Cu core-shell NPs in HNO3, (B) 

DNSPs obtained through dealloying of Alloy-G NPs (DNSPs-G), and (C) DNSPs obtained 

through dealloying of Alloy-G NPs (DNSPs-H). CV curves of electrochemical surface oxide 

stripping of (D) Au NPs, (E) DNSPs-G, and (F) DNSPs-H in 0.5 M H2SO4 at a potential sweep 

rate of 5 mV s
−1

.  

 

We also used electrochemical oxide stripping to identify the surface atomic-level 

structure of the dealloyed Au NPs. As shown in Figure 4.7D, the oxidation of Au NPs 

etched from Au@Cu core-shell nanostructures occurred in a potential range above 1.3 V 

(vs. SCE). While DNSPs-G (Figure 4.7E) and DNSPs-H (Figure 4.7F) exhibited 

predominant oxidation peaks at ~ 1.23 V (vs. SCE) and ~ 1.03 V (vs. SCE) during the 

anodic scans, which were in very good agreement with the oxidation potentials occurred 



www.manaraa.com

107 
 

on Au TOH and ETHH NPs with, respectively. The results signified that the surfaces of 

the DNSPs-G are dominated by undercoordinated surface atoms with a SACN of 7, 

while the surfaces of DNSPs-H are rich of surface atoms with an even lower SACN of 6, 

respectively. Based on cathodic stripping peaks, the mass-specific ECSAs of DNSPs-G 

and DNSPs-H were calculated to be approximately 10.9 and 30.1 m
2
 g

-1
, respectively, 

which is 20 and 50 times higher than that of the Au TOH and ETHH NPs with the same 

SACNs. 

 

Figure 4.8. Selective electrocatalytic oxidation of glucose on DNSPs. (A) CV curves of Au 

NPs (etched Au@Cu core-shell NPs), DNSPs-G, and DNSPs-H in a deoxygenated solution 

containing 6.0 mM glucose and 0.5 M KOH electrolyte at a potential sweep rate of 50 mV s
−1

. (B) 

Mass activity (MA), electrochemically active surface areas (ECSA), and specific activity (SA) of 

DNSPs-G, DNSPs-H, Au TOH NPs, and Au ETHH NPs. (C) CA curve of DNSPs-G at 0.24 V 

(vs. SCE). (D) CA curve of DNSPs-H at 0.40 V (vs. SCE). All CA measurements were carried 

out in solutions containing 6.0 mM glucose and 0.5 M KOH electrolyte. The insets of panel C and 

D show MAs of DNSPs-G and DNSPs-H after multiple CV cycles. (E) Amperometric response 

of DNSPs-G to successive additions of glucose at 0.24 V (vs. SCE). (F) Amperometric response 

of DNSPs-H to successive additions of glucose at 0.40 V (vs. SCE). The insets of panels E and F 

show the corresponding calibration curve for glucose detection.  

 

To quantitatively unravel the correlation between the SACN and the electrocatalytic 
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selectivity, we investigated the electrocatalytic activities of the Au DNSPs and Au NPs 

for GOR. As shown in Figure 4.8A, in contrast to electrocatalytically inert of Au NPs, 

the Au DNSPs exhibited remarkable electrocatalytic activities. The oxidation peaks at ~ 

0.24 V (vs. SCE) on DNSPs-G and ~ 0.40 V (vs. SCE) on DNSPs-H strongly indicated 

the oxidation product was glucnolactone and glucaric acid, respectively. This result 

strongly indicated electrocatalytic selectivity is sensitively dependent upon the surface 

atomic coordinations of the dealloyed Au NPs. By normalizing the oxidation peak 

current against the mass of Au on each electrode for GOR (Figure 4.8B), mass activities 

of ~ 14 µA µg
-1

 (at 0.24 V vs. SCE) and ~ 32 µA µg
-1

 (at 0.40 V vs. SCE) were obtained 

on the Au DNSPs-G and DNSPs-H NPs at a scan rate of 50.0 mV s
-1

, which were about 

20 and 30 orders of magnitude higher than those of the Au TOH (~ 0.73 µA µg
-1

 at 0.24 

V vs. SCE) and ETHH NPs (~ 0.95 µA µg
-1

 at 0. 40 V vs. SCE), as a consequence of 

their significantly higher specific ECSA. The specific activates (SAs) of the Au DNSPs 

were calculated by normalizing the MAs against ECSAs, which were closely tied to the 

active site density on the NP surfaces. The Au DNSPs-G and DNSPs-H possessed 

similar SAs with those of Au TOH and ETHH NPs, respectively, which indicated the 

comparable densities of surface active sites on the surfaces of Au DNSPs-G and TOH 

NPs, as well as Au DNSPs-H and ETHH NPs. We used chronoamperometry (CA) 

measurements to assess the electrocatalytic durability of the DNSPs at their oxidation 

peak potentials. The catalytic activities of both Au DNSPs were significantly robust, as 

shown in Figures 4.8C and D. Multiple CV cycles showed slight decrease in oxidation 

currents (the insets of Figures 4.8C and 4.8D), which were consistent with the CA results. 

We further studied the Amperometric response of DNSPs for the successive injection of 
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glucose to 1 M KOH at their corresponding oxidation peaks and the typical i-t curves are 

displayed in Figures 4.8E and F. The corresponding current-concentration calibration 

plots clearly show that the linear relationship with R
2 

of 0.999 and 0.998 for the DNSPs-

G and DNSPs-H NPs, respectively. The sensitivity of the DNSPs-H determined by the 

slope of the linear fitting is 3.23 A g
-1

 mM
-1

, which is obvious higher than that (1.29 A  

g
-1

 mM
-1

) of the DNSPs-G NPs.  

 
 

Figure 4.9. CV curves of (A) DNSPs-G and (B) DNSPs-H in deoxygenated solutions of 6.0 mM 

glucose, 6.0 mM gluconolactone, or 6.0 mM glucaric acid in 0.5 M KOH electrolyte at a potential 

sweep rate of 50 mV s
−1

.  

 

The SACN-dependent electrocatalytic selectivity of Au DNSPs was further verified 

by their electrocatalytic performances for gluconolactone and glucaric acid oxidation 

(Figure 4.9). The DNSPs-G exhibited dramatically diminished activity for 

gluconolactone oxidation whereas DNSPs-H efficiently catalyzed the further oxidation 

of gluconolactone into glucaric acid, and no activities were tested for glucaric acid 

oxidation on both Au DNSPs. Furthermore, we also investigated the electrocatalytic 

oxidation of fructose (a glucose isomer) and sucrose (a glucose fructose dimer) on the 

DNSPs to see whether the SACN-dependent electrocatalytic selectivity is a general 
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feature also for other small sugar molecules with similar structures to that of glucose. 

Similar selectivity observed in the reaction of fructose and sucrose oxidations further 

well verified the strong correlation between SACN and electrocatalytic selectivity 

(Figures 4.10A and 4.10B).  

 
 

Figure 4.10. (A) CV curves of DNSPs-G and DNSPs-H in a deoxygenated solution of 6.0 mM 

fructose in 0.5 M KOH electrolyte at a potential sweep rate of 50 mV s
−1

. (B) CV curves of 

DNSPs-G and DNSPs-H in a deoxygenated solution of 6.0 mM sucrose in 0.5 M KOH electrolyte 

at a potential sweep rate of 50 mV s
−1

. (C) Mass activities and (D) specific activities of DNSPs-G 

and DNSPs-H for eletectrocatalytic oxidation of glucose, fructose, and sucrose.  

 

The Mas and SAs of the Au DNSPs for fructose and sucrose oxidations were also 

estimated (Figures 4.10C and 4.10D). The remained catalytic performances after CA 

measurements were further evaluated by CV (Figure 4.11). The electrochemical surface 

oxide stripping after CA and multiple CV cycles measurements as well as TEM images 

after CA measurements suggested the porous structures and catalytically active sites of 
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the DNSPs were well-preserved during the GOR (Figure 4.12). 

 
 

Figure 4.11. (A) CV curves of DNSPs-G before and after CA measurement (at 0.24 V vs. SCE 

for 2 h). (B) CV curves of DNSPs-H before and after CA measurement (at 0.4 V vs SCE for 2 h). 

Multiple cycle CV curves of (C) DNSPs-G and (D) DNSPs-H. The potential sweep cycle 

numbers are labeled in each panel. All the measurements were carried out in a deoxygenated 

solution containing 0.5 M KOH and 6.0 mM  glucose at a potential sweep rate of 50 mV s
−1

.   

 

As a comparison, we also studied the electrocatlytic stabilities of the Au TOH and 

ETHH NPs (Figures 4.13 and 4.14).  The catalytic activity of Au TOH NPs was more 

robust than that of Au ETHH NPs. The morphology and catalytic activity of the Au TOH 

NPs were well-preserved, whereas the corners and edges of Au ETHH NPs disappeared 

and catalytic current dramatically decreased accompany with negatively shifted 

oxidation peak after CA measurement. During multiple CV cycles, the catalytic current 
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gradually decreased and the peak potential negatively shifted until reaching to 0.24 V (vs. 

SCE) eventually, which arose from the loss of highly active surface undercoordinated 

atoms as a consequence of surface structural remodeling based on the oxidation stripping 

curves after CA.  

 

 
 

Figure 4.12. CV curves of electrochemical surface oxide stripping of (A) DSNPs-G and (B) 

DSNPs-H in 0.5 M H2SO4 at a potential sweep rate of 5.0 mV s
-1

 before and after CA 

measurement and after 2500 CV cycles. (C) TEM image of DSNPs-G after CA measurements (at 

0.24 V vs. SCE for 2 h). (D) TEM image of DSNPs-H after CA measurements (at 0.4 V vs. SCE 

for 2 h).  
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Figure 4.13. (A) CA curve of Au TOH NPs at 0.24 V (vs. SCE) in deoxygenated solution 

containing 0.5 M KOH and 6.0 mM glucose. The insets show the TEM images of the TOH NPs 

before and after CA measurements (at 0.24 V vs. SCE for 2 h). (B) CV curves of Au TOH NPs 

before and after CA measurements (at 0.24 V vs. SCE for 2 h) in a deoxygenated solution 

containing 0.5 M KOH and 6.0 mM glucose at a potential sweep rate of 50 mV s
−1

. (C) Multiple-

cycle CV curves of Au TOH NPs in deoxygenated solution containing 0.5 M KOH and 6.0 mM 

glucose at a potential sweep rate of 50 mV s
−1

. (D) CV curves of electrochemical surface oxide 

stripping of Au TOH NPs, Au TOH NPs after CA measurements (at 0.24 V vs. SCE for 2 h), Au 

TOH NPs after 2500 CV cycles. The oxide stripping experiments were carried out in 0.5 M 

H2SO4 at a potential sweep rate of 5.0 mV s
-1

. 
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Figure 4.14. (A) CA curve of Au ETHH NPs at 0.40 V (vs. SCE) in deoxygenated solution 

containing 0.5 M KOH and 6.0 mM glucose. The insets show the TEM images of the ETHH NPs 

before and after CA measurements (at 0.40 V vs. SCE for 2 h). (B) CV curves of Au ETHH NPs 

before and after CA measurements (at 0.40 V vs. SCE for 2 h) in a deoxygenated solution 

containing 0.5 M KOH and 6.0 mM glucose at a potential sweep rate of 50 mV s
−1

. (C) Multiple-

cycle CV curves of Au ETHH NPs in deoxygenated solution containing 0.5 M KOH and 6.0 mM 

glucose at a potential sweep rate of 50 mV s
−1

. (D) CV curves of electrochemical surface oxide 

stripping of Au ETHH NPs, Au ETHH NPs after CA measurements (at 0.40 V vs. SCE for 2 h), 

and Au ETHH NPs after 2500 CV cycles. The oxide stripping experiments were carried out in 0.5 

M H2SO4 at a potential sweep rate of 5.0 mV s
-1

. 

 

4.4 Conclusion 

We developed a versatile approach to precisely control the surface atomic coordination 

numbers (SACNs) of the dealloyed porous Au NPs by percolation dealloying of Au-Cu 

bimetallic NPs with interior compositional gradients or atomic well intermixed Au-Cu 

alloy. Using electrocatalytic oxidation of glucose and other small sugar molecules as 
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model reactions, we demonstrated that the catalytic selectivity of dealloyed porous Au 

NPs could be achieved based on the quantitative understanding of the relationship 

between the SACNs and the electrocatalytic activity. The insights gained from this work 

provide essential design principles for the optimization of noble metal nanostructures 

toward highly efficient and selective electrocatalytic oxidation of glucose and other small 

sugar molecules for the potential applications in biomass-based fuel cell and 

biomolecular sensing. 
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CHAPTER 5 

GALVANIC REPLACEMENT-DRIVEN TRANSFORMATIONS OF 

ATOMICALLY INTERMIXED BIMETALLIC NANOCRYSTALS: 

EFFECTS OF COMPOSITIONAL STOICHIOMETRY AND 

STRUCTURAL ORDERING 
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5.1 Introduction 

Galvanic replacement reactions (GRRs), which involve the atomic exchange between 

metallic elements with different reduction potentials, represent an intriguing redox 

process that entangles matter exchange with structural remodeling of metallic materials 

over multiple length- and time-scales.
1-3

 GRRs, when dictated by nanoparticulate 

templates, provide a simple but versatile pathway to controllably transform solid 

monometallic nanoparticles (NPs) into multimetallic hollow nanostructures that are 

typically unrealizable through other means,
2-11

 tremendously enhancing our capabilities 

to fine-tune the optical, electronic, and surface properties of complex metallic 

nanostructures for widespread applications in sensing,
12-14

 biomedicine,
15-17

 and 

catalysis.
18-20

  The remarkable level of architectural control exerted over metallic NPs 

through GRRs has been best manifested when using geometrically simple and 

synthetically tailorable Ag nanocrystals, such as nanospheres,
3,14

 nanocubes,
2,4,21

 

nanoprisms,
22,23

 and nanowires,
24

 as the sacrificial templates for GRRs. A quintessential 

system intensively investigated over the past two decades has been single-crystalline Ag 

nanocubes, which evolve into a diverse set of multimetallic hollow nanostructures, 

selectively adopting nanobox, nanocage, or nanoframe geometries upon galvanic 

exchange of Ag with Au, Pd, or Pt under deliberately controlled synthetic 

conditions.
4,9,16,21,25,26

 Multimetallic NPs exhibiting even more complicated interior and 

surface architectures, such as yolk-shell nanorattles,
24,27

 multilayered 

nanomatryoshkas,
2,24,28,29

 ultrathin skeletal nanoframes,
30,31

 and popcorn-like 

nanostructures with multiple cavities,
32

 become experimentally realizable when 

employing more sophisticated multimetallic heteronanostructures
29,33

 or substrate-
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supported NPs
34,35

 as the sacrificial templates or by judiciously coupling GRRs with co-

reduction,
13,36,37

 corrosion,
30,31

 Kirkendall diffusion,
2
 seeded growth,

38
 and regioselective 

surface passivation.
32,39,40

 While rich information can be extracted empirically from 

previous observations, it has long been a challenging task to build a coherent mechanistic 

knowledge framework that unequivocally interprets how a series of key underlying 

thermodynamic, kinetic, and geometric factors rigorously modulate the interplay of 

multiple GRR-driven structure-rearranging processes and thereby profoundly influence 

the NP transformations. 

Atomically intermixed bimetallic nanocrystals adopting either disordered alloy 

configurations or ordered intermetallic structures
41,42

 may undergo GRR-driven structural 

transformations that are substantially more sophisticated and versatile than those of 

monometallic nanocrystals or phase-segregated bimetallic heteronanostructures. Here we 

demonstrate that the complex mechanisms dictating the GRR-driven transformations of 

alloy and intermetallic NPs can be fully elucidated within a central conceptual framework 

involving the interplay of three fundamentally intriguing structure-transforming 

pathways, namely dealloying, Kirkendall diffusion, and Ostwald ripening. Although both 

dealloying
43-46

 and Kirkendall diffusion
47,48

 have been intensively studied in bulk 

materials for decades, how they work synergistically within the confinement by a 

nanocrystal to guide the intricate nanoscale structural evolution upon initiation of GRRs 

still remains an open question. The nanocrystal transformations governed by dealloying 

and Kirkendall diffusion are further entangled with thermodynamically driven domain 

coarsening, a process known as Ostwald ripening.
49-51

 How to kinetically manipulate the 

Ostwald ripening process with respect to dealloying and Kirkendall diffusion still 
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remains largely unexplored. Using Au-Cu alloy and intermetallic NPs as structurally and 

compositionally fine-tunable sacrificial templates for GRRs, we demonstrate that the 

compositional stoichiometry and structural ordering serve as two key factors that 

rigorously maneuver the relative rates of dealloying and Kirkendall atomic interdiffusion 

with respect to that of Ostwald ripening, enabling atomically intermixed Au-Cu 

bimetallic nanocrystals to selectively transform into an entire family of architecturally 

distinct complex nanostructures through straightforward GRRs under mild reaction 

conditions.  

5.2 Experimental Details 

Chemicals and Materials Polyvinylpyrrolidone (PVP, average MW 58000), chloroauric 

acid (HAuCl4·4H2O), copper nitrate hydrate (Cu(NO3)2·3H2O), and tetraethylene glycol 

(TEG) were purchased from Alfa Aesar. Hydrazine solution (N2H4·3H2O, 35 wt %), 

nitric acid (HNO3, 65 %), sulfuric acid (H2SO4, 98 %), Nafion perfluorinated resin 

solution (5 wt %), and bicinchoninic acid disodium salt hydrate (BCA, 

C20H10N2Na2O4·xH2O, ≥ 98.0 %) were purchased from Sigma-Aldrich. Potassium 

carbonate (K2CO3) and formaldehyde (37 wt %) were purchased form J.T. Baker. 

Ammonium hydroxide (28-30%) was purchased from British Drug Houses. Sodium 

hydroxide (NaOH) was purchased from Fisher Scientific. All reagents were used as 

received without further purification. Ultrapure Milli-Q water with a resistivity of 18.2 

MΩ (Millipore) was used for all experiments. 

Synthesis of Au@Cu2O Core-shell Nanoparticles (NPs) Au quasi-spherical NPs 

with average diameter of 107 nm were synthesized by reducing HAuCl4 with 

formaldehyde at room temperature.
52

 Briefly, 50 mg of K2CO3 was dissolved in 200 mL 
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of water, followed by addition of 3 mL of 25 mM HAuCl4. The mixture solution was 

aged in the dark for 18 h before use. Then 2.0 mL of 37 wt % formaldehyde solution was 

added into the mixture under vigorous magnetic stir (300 rpm). After 30 minutes, the Au 

NPs were centrifuged (2300 rcf), washed with water twice, and finally redispersed in 10 

mL of water.  

Au@Cu2O core-shell nanoparticles were synthesized using our previously reported 

method with minor modifications.
53

 9.6 mL of the as-synthesized colloidal Au NPs was 

first introduced into 300 mL of 2 wt % PVP aqueous solution. 3.6, 1.2, or 0.4 mL of 0.1 

M Cu(NO3)2 was subsequently added, depending on the targeted Au/Cu stoichiometric 

ratios of the resulting Au@Cu2O core-shell NPs. The reaction mixture was placed in an 

ice bath, and then 0.67 mL of 5 M NaOH and 0.3 mL of N2H4·3H2O solution were added 

under magnetic stir. The solutions were kept being stirred for 10 minutes. The resulting 

NPs were separated from the reaction mixtures by centrifugation and redispersed in 10 

mL ethanol.  

Monometallic Cu NPs were synthesized following a previously reported protocol.
54

 

Briefly, 0.2 mL of N2H4·3H2O solution was added into 1 mL of 0.1 M Cu(NO3)2 solution 

under magnetic stir at room temperature. Cu NPs formed immediately as red precipitates 

and were centrifuged (1500 rpm, 5 min), washed with ethanol 3 times, and finally 

redispersed into 1 mL ethanol. 

Synthesis of Au-Cu Alloy and Intermetallic NPs Au-Cu alloy and intermetallic NPs 

were synthesized using a polyol-assisted growth method. Typically, 1.0 mL of Au@Cu2O 

core-shell NPs with Au/Cu of 1:3 were added into 20.0 mL tetraethylene glycol (TEG) 

containing 0.1 g PVP. AuCu3 alloy (denoted as AuCu3-A) and intermetallic NPs (denoted 
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as AuCu3-I) were synthesized by keeping the reaction mixtures at 300 
o
C for 1 hour and 

10 hours, respectively. AuCu alloy (denoted as AuCu-A) and intermetallic NPs (denoted 

as AuCu-I) were synthesized by keeping Au@Cu2O core-shell NPs with Au/Cu atomic 

ratio of 1:1 suspended in TEG at 300 
o
C for 30 minutes and 1 hour, respectively. Au3Cu 

alloy (denoted as Au3Cu-A) was synthesized by keeping Au@Cu2O core-shell NPs with 

Au/Cu atomic ratio of 3:1 suspended in TEG at 300 
o
C for 20 minutes. The as-

synthesized alloy NPs were quickly cooled by incubating the samples in an ice bath, 

whereas the intermetallic NPs were cooled down to room temperature naturally under 

ambient air. The resulting NPs were washed with ethanol five times, and finally re-

dispersed in 1.0 mL of water.  

Galvanic Replacements of Au-Cu Alloy and Intermetallic NPs with HAuCl4 In a 

typical galvanic replacement reaction (GRR), 100 µL of an aqueous suspension of Au-Cu 

alloy or intermetallic NPs were added into 1.0 mL deionized water in a small glass vial. 

Varying amount (10 ~ 150 µL) of 10 mM HAuCl4 was subsequently added into the 

solution under magnetic stir at room temperature. The resulting NPs were separated by 

centrifugation, washed with ethanol, and finally redispersed in water. 

Structural Characterizations of NPs The morphologies and structures of the NPs 

were characterized by transmission electron microscopy (TEM) using a Hitachi H-8000 

transmission electron microscope, which was operated at an accelerating voltage of 200 

kV. All samples for TEM measurements were dispersed in ethanol and drop-dried on 300 

mesh Formvar/carbon-coated-Cu grids (Electron Microscopy Science Inc.). The 

structures and compositions of the NPs were also characterized by scanning electron 

microscopy (SEM) and energy dispersive spectroscopy (EDS) using a Zeiss Ultraplus 
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thermal field emission scanning electron microscope. The samples for SEM and EDS 

measurements were dispersed in ethanol and drop-dried on silicon wafers. The NP sizes 

were analyzed on the basis of SEM images using Nano Measurer analysis software 

(Department of Chemistry, Fudan University, China). The size distribution histograms 

were obtained from more than 100 NPs for each sample. Powder X-ray diffraction 

(PXRD) patterns were record on a SAXSLab Ganesha at the South Carolina SAXS 

Collaborative (Cu Kα = 1.5406 Å). The optical extinction spectra were collected on 

colloidal NPs suspended in water at room temperature using a Beckman Coulter Du 640 

spectrophotometer. Electrochemical measurements were performed using a CHI 660E 

workstation (CH Instruments, Austin, Texas) at room temperature with a three-electrode 

system composed of a Pt wire as the auxiliary, a saturated calomel electrode (SCE) as the 

reference, and a glassy carbon electrode (GCE, 3 mm diameter) loaded with NPs as the 

working electrode. The GCEs were polished with 0.3 µm alumina slurry, followed by 

washing with water and ethanol before use. 10 µL of colloidal suspensions containing 4 

µg of alloy or intermetallic NPs were dropped and air-dried on the pretreated GCEs at 

room temperature, and then 2 μL of Nafion solution (0.2 wt %) was dropped to hold the 

NPs. The linear sweep voltammetry (LSV) of various NPs were measured at room 

temperature in 0.5 mM H2SO4 electrolyte in the potential scan range from 0 V to 0.7 V 

(vs. SCE) at a potential sweep rate of 50 mV s
-1

. 

Cluster Expansion Calculations The phase diagram of the Au-Cu binary system at 0 

K was predicted using the Alloy Theoretic Automated Toolkit (ATAT)
 55,56

 software 

package. The ATAT code first invokes Density Functional Theory (DFT) code, in our 

case the Vienna Ab initio Simulation Package (VASP),
57

 to determine the energy of 
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carefully selected ordered alloy structures. These DFT-computed energies were then used 

to determine the interaction parameters of the cluster expansion of an Ising-like 

Hamiltonian, from which the energies of other ordered and random alloys are determined 

according to the following equation:  

 

where, σ is a configuration of the alloy, S is the Ising spin variable which takes on values 

of either -1 or +1 depending on whether the site i was occupied by a Cu or Au atom, J’s 

are the effective cluster interaction (ECI) energies. The results of these calculations were 

shown in Figure 5.1B. The energies of the monometallic Au and Cu shown here are those 

calculated from the cluster expansion. The deviation of these values from zero is thus a 

measure of the uncertainty in the results of the calculations (approximately 0.015 

eV/atom). 

5.3 Results and Discussions 

Precise structural and compositional control over the Au-Cu bimetallic NPs was achieved 

through colloidal synthesis deliberately designed using the bulk phase diagram
58

 as a 

guiding principle. As shown in Figure 5.1A, Au and Cu atoms are thermodynamically 

miscible over the entire stoichiometric range, forming face centered cubic (fcc) alloy 

structures spanning a broad temperature range up to the melting points of the alloys. Two 

atomically ordered intermetallic phases with specific Au/Cu stoichiometric ratios of 1:3 

and 1:1 are thermodynamically favored at temperatures below ~ 400 ⁰C. Despite a 

decrease in entropy, the enthalpy-driven transitions of disordered alloys to intermetallic 

compounds become spontaneous at low temperatures because the formation of Au-Cu 

intermetallic bonds is energetically more favorable than that of Au-Au and Cu-Cu 
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bonds.
41

 Cluster expansion calculations also predicted AuCu3 and AuCu as two 

thermodynamically stable intermetallic phases for the Au-Cu binary system (Figure 5.1B), 

further confirming the prediction by the experimental phase diagram. The AuCu3 

intermetallic compound (denoted as AuCu3-I; lattice parameter: a = 3.75 Å; space group: 

P 4/m – 3 2/m (221); Strukturbericht notation: L12) adopts the fcc structure (Figure 5.1C), 

while the atoms in the AuCu intermetallic compound (denoted as AuCu-I; lattice 

parameter: a = 3.96 Å, c = 3.67 Å; space group: P 4/m 2/m 2/m (123); Strukturbericht 

notation: L10) are organized into a face-centered tetragonal (fct) structure (Figure 5.1D). 

As schematically illustrated in Figure 5.1E, colloidal Au@Cu2O core-shell NPs 

underwent a stepwise chemical reduction, intraparticle alloying, and structural ordering 

process to evolve into Au-Cu alloy and intermetallic NPs upon thermal treatment at 300 

⁰C in tetraethylene glycol (TEG), a liquid polyol serving as both the solvent and the 

reducing agent. The Au/Cu stoichiometric ratios of the alloy NPs were essentially 

predetermined by the relative core and shell dimensions of their parental Au@Cu2O core-

shell NPs, which could be fine-tuned over a broad range using a seed-mediated growth 

method we previously developed.
53

 At Au/Cu stoichiometric ratios of 1:3 and 1:1, NPs of 

disordered alloys represented the metastable structures that were kinetically trapped 

immediately after the Au and Cu atoms were fully intermixed. The AuCu3 and AuCu 

alloy NPs, denoted as AuCu3-A and AuCu-A NPs respectively, further underwent a 

structural ordering process to form intermetallic NPs when maintained at 300 ⁰C in TEG 

over longer reaction times. The transformations of core-shell NPs into alloy and 

intermetallic NPs were visualized through transmission electron microscopy (TEM) 

imaging (Figures 5.1F and 5.1I) and further confirmed by correlated scanning electron 
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microcopy (SEM) imaging and energy-dispersive spectroscopy (EDS)-based elemental 

mapping (Figure 5.2). 

 

Figure 5.1. Au-Cu alloy and intermetallic NPs. (A) Experimental phase diagram of bulk Au-Cu 

bimetallic materials. (B) Formation energies of Au-Cu bimetallic structures with varying 

compositional stoichiometries calculated by cluster expansion calculations. The green ×s are the 

results of density functional theory (DFT) calculations. The red +s come from cluster analysis of 

the DFT results. The blue ×s identify the predicted thermodynamically stable structures. Unit cell 

structures of (C) fcc AuCu3 intermetallic compound (denoted as AuCu3-I) and (D) fct AuCu 

intermetallic compound (denoted as AuCu-I). The red and yellow spheres represent Cu and Au 

atoms, respectively. (E) Scheme illustrating the transformations of Au@Cu2O core-shell NPs into 

Au-Cu alloy and intermetallic NPs. (F) TEM images of Au@Cu2O core-shell NPs (average core 

diameter of 107 nm and shell thickness of 50 nm), AuCu3 alloy nanoparticles (denoted as AuCu3-

A), and AuCu3-I intermetallic NPs. (G) PXRD patterns of AuCu3-A and AuCu3-I NPs. The 

standard diffraction patterns for bulk Au (JCPDS no. 04-0784), Cu (JCPDS no. 04-0836), and 

AuCu3-I (JCPDS no. 35-1537) are also included. The spectra are offset for clarity. (H) Size 

distributions of Au@Cu2O core-shell, AuCu3-A, and AuCu3-I NPs. (I) TEM images of Au@Cu2O 

core-shell NPs (average core diameter of 107 nm and shell thickness of 27 nm), AuCu alloy NPs 

(denoted as AuCu-A), and AuCu-I intermetallic NPs. (J) PXRD patterns of AuCu-A and AuCu-I 

NPs. The standard diffraction patterns for bulk Au, Cu, and AuCu-I (JCPDS no. 25-1220) are 

also shown. (K) Size distributions of Au@Cu2O core-shell, AuCu-A, and AuCu-I NPs.  
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Figure 5.2. EDS elemental mapping results of (A) AuCu3-A, (B) AuCu3-I, (C) AuCu-A, and 

(D) AuCu-I NPs. 

 

As revealed by powder X-ray diffraction (PXRD), the as-synthesized AuCu3-A and 

AuCu-A NPs exhibited fcc homogenous alloy structures comprising fully intermixed Au 

and Cu atoms (Figures 5.1G and 5.1J), absent of any detectable phase-segregated 

monometallic Au or Cu domains or Cu2O phases. Using the Bragg’s law, we calculated 

the lattice parameters of the solid solutions based on the PXRD patterns, which allowed 

us to further calculate the Cu/Au stoichiometries of various alloy NP samples using the 

Vegard’s law.
59

 The Au/Cu atomic ratios calculated from the PXRD results agreed with 

those quantified by inductively coupled plasma mass spectrometry (ICP-MS) and EDS. 

Upon atomic ordering of the alloy NPs, the primary PXRD peaks (labeled with #) were 

shifted accompanied by the emergence of characteristic superlattice peaks (labeled with 

*), signifying the formation of AuCu3 and AuCu intermetallic phases (Figures 5.1G and 

5.1J). The AuCu3-I and AuCu-I NPs exhibited PXRD features in excellent agreement 

with those of the standard patterns and previously reported intermetallic NP samples.
60-64
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While both the quasi-spherical NP morphology and Au/Cu stoichiometric ratios were 

well-preserved, the particle sizes decreased significantly upon transformations of 

Au@Cu2O core-shell NPs into alloy NPs. Less significant but nonnegligible size 

shrinkage was also observed when the alloy NPs further evolved into intermetallic NPs 

(Figures 5.1H and 5.1K). 

The structurally and compositionally tunable Au-Cu bimetallic NPs provided a unique 

materials system for us to pinpoint the effects of compositional stoichiometry and atomic-

level structural ordering on GRR-driven NP transformations. We conducted the GRRs at 

room temperature in an aqueous environment using colloidal Au-Cu alloy or intermetallic 

NPs as the sacrificial templates and HAuCl4 as the Au precursor in the absence of any 

additional surface capping ligands. Under our GRR conditions, Cu was oxidized into 

Cu(II) rather than Cu(I) ionic species while HAuCl4 was reduced to form metallic Au, 

exhibiting a net reaction outcome of every three Cu atoms substituted by two Au atoms. 

The galvanic exchange between Cu and Au involved selective etching of Cu from the 

Au-Cu alloy or intermetallic matrices, a process known as dealloying. Bimetallic alloys 

exhibit interesting composition-dependent dealloying behaviors. For example, a 

macroscopic Au-Ag alloy membrane may selectively evolve into a three-dimensional 

solid/void bicontinuous foamy structure consisting of Au-rich nanoligaments through 

percolation dealloying or form a surface-passivating atomic layer of Au at the 

membrane/electrolyte interfaces through surface dealloying, depending on the atomic 

fraction of Ag and detailed dealloying conditions.
46,65

 The electrochemical parameter 

signifying the onset potential of percolation dealloying is termed as critical potential, 

Ec.
66

 The Ec of a spherical binary alloy NP with a radius of r and a compositional formula 
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of A1-pBp(A and B represent the nonleachable noble and the leachable less-noble 

elements, respectively, and p is atomic fraction of B) is a function of both p and r, as 

expressed as follows:
66
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where γAlloy and fAlloy are the free energy and the stress at the alloy/electrolyte interface, 

respectively. 
A


is the partial molar volume of A in the alloy. ⟨Ω⟩ represents the average 

molar volume of the alloy. n is the number of electrons every B atom loses upon 

oxidation. F is the Faraday constant. E̅c is the critical potential of the bulk alloy, which is 

a function of p and related to the molar volume of A, ΩA, the interfacial free energy of B 

exposed to the electrolyte, 
elecB /

 , the local radius of the surface where a cylindrical pit is 

created upon dealloying, ξ , and the equilibrium potential, E̅eq, above which the surface 

dealloying at the top-most atomic layer occurs, as shown by the following equation 
67
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Because the maximum possible values of γAlloy and fAlloy are ∼ 2 and ~ 6 J m
–2

, 

respectively,
68

 Ec becomes virtually equivalent to E̅c when an alloy NP becomes larger 

than 10 nm (r>5 nm). To eliminate additional complications associated with the NP size 

effects, here we focused on Au-Cu bimetallic NPs significantly larger than 10 nm, which 

exhibited composition-dependent dealloying behaviors analogous to those of their bulk 

counterparts. When exposed to certain electrochemical or chemical oxidizing 

environments, almost all binary alloys have been observed to display a characteristic 

threshold p value known as the parting limit, above which percolation dealloying occurs. 

The parting limits of Au-Ag and Au-Cu alloys were measured to be ~55 atomic % of 
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Ag
69

 and ~ 70 atomic % of Cu,
54,70

 respectively, in acidic electrolytes at room 

temperature. The origin of the characteristic parting limits of alloys can be fully 

interpreted in the context of the composition-dependent Ec as discussed above.  

 

Figure 5.3. TEM images of fully dealloyed NPs obtained after exposing (A) AuCu3-A and (B) 

AuCu3-I NPs to 1 M HNO3 at room temperature for 1 hour. (C) Temporal evolution of Cu atomic % 

of the NPs upon exposure of AuCu3-A and AuCu3-I NPs to 1 M HNO3 at room temperature. The 

Cu atomic % was quantified by EDS and the error bars represent the standard deviation of three 

samples. 

 

We systematically investigated the GRR-driven transformations of Au-Cu alloy and 

intermetallic NPs in two strikingly distinct compositional regimes divided by the parting 

limit for percolation dealloying (~ 70 atomic % of Cu). AuCu3-A and AuCu3-I NPs, both 

of which possessed Cu content above the parting limit, underwent nanoporosity-evolving 

percolation dealloying when exposed to 1 M nitric acid at room temperature, resulting in 

the formation of bicontinuous, sponge-like NPs composed of Au-rich nanoligaments 

(Figure 5.3). When AuCu3-A and AuCu3-I NPs underwent galvanic exchange with 

HAuCl4, their structural transformations became remarkably more complicated than those 
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induced by dealloying alone. The deposition of Au at the NP-electrolyte interfaces not 

only modified the local surface structures of the evolving nanoligaments, but also 

profoundly influenced the energetics and dynamics associated with the surface atomic 

migrations. More importantly, the deposition of Au on the surfaces of an alloy NP created 

interfacial compositional gradient, which triggered the interdiffusion of Au and Cu atoms 

across the interface between the alloy and monometallic Au. The nonequivalent diffusion 

rates of Cu and Au atoms caused the alloy/Au interface to migrate toward one direction 

while forming cavities at the materials boundaries, a classic effect of atomic 

interdiffusion known as the Kirkendall effect.
47,71

 The velocity at which the boundary 

interface travels can be described by the Darken’s equation
72

 

dx

dN
DDv A

BA )(                                                                                                            (3), 

where DA and DB are the diffusion coefficients of component A and B, respectively. 

dNA/dx represents the compositional gradient of A across the boundary. Previously 

observed GRR-induced hollowing of metallic NPs can all be interpreted in the context of 

the Kirkendall effect.
2,3,6,11,14,32,36,38

 

To ensure complete galvanic exchange between Cu and Au, we exposed the AuCu3-A 

and AuCu3-I NPs to excessive HAuCl4 for 48 h. We tracked the temporal evolution of the 

NP structures and compositions during the GRRs using PXRD (Figures 5.4A and 5.4B), 

EDS (Figure 5.4C), optical extinction spectroscopy (Figure 5.4D), SEM (Panels a in 

Figures 5.4E-5.4H), and TEM (Panels b in Figures 5.4E-5.4H). 
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Figure 5.4. Structural and compositional evolutions of AuCu3-A and AuCu3-I NPs upon 

exposure to HAuCl4. PXRD patterns of NPs obtained after mixing 1 mL colloidal (A) AuCu3-A 

and (B) AuCu3-I NPs with 150 µL of 10 mM HAuCl4 at room temperature for 1 and 30 minutes. 

The standard diffraction patterns for bulk Au, Cu, and AuCu3-I are also included. Temporal 

evolutions of (C) Cu atomic % and (D) optical extinction spectra of the NPs after mixing AuCu3-

A and AuCu3-I NPs with 150 µL of 10 mM HAuCl4. SEM (X-a, X = E, F, G, H) and TEM (X-b) 

images of NPs obtained after exposing AuCu3-A or AuCu3-I NPs to HAuCl4 for various reaction 

times: (E) AuCu3-A, 1 min; (F) AuCu3-A, 48 h; (G) AuCu3-I, 1 min; (H) AuCu3-I, 48 h. All the 

SEM images share the same scale bar in Panel E-a, and all the TEM images share the same scale 

in Panel E-b. 

 

While the AuCu3-A NPs evolved into similar bicontinuous spongy morphologies 

(Figure 5.4E), the GRRs were observed to be drastically faster than the percolation 

dealloying essentially due to GRR-triggered interdiffusion of Au and Cu atoms in the 

alloy NPs. More than 90 % of the Cu in the AuCu3-A NPs was rapidly replaced by Au 

within 1 minute upon initiation of GRRs (Figures 5.4A-5.4C), whereas the leaching of Cu 

during the percolation dealloying occurred over much long time periods. In addition, the 

Kirkendall atomic interdiffusion further boosted the cavity formation and volume 
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expansion of the NPs.
71

 Although the percolation dealloying caused significantly 

shrinkage of the overall particle sizes, the spongy NPs formed through GRRs of AuCu3-A 

NPs exhibited ~ 90 % increase in the total particle volume in comparison to their parental 

alloy NPs (Figure 5.4E). In contrast to the disordered alloys, atomically ordered 

intermetallic structures exhibit higher energy barriers for the atomic interdiffusion.
73,74

 

The AuCu3-I NPs evolved into fragmented, irregularly-shaped ligaments during GRRs 

instead of forming bicontinuous spongy structures (Figure 5.4G) as a consequence of 

suppressed Kirkendall interduffsion of Au and Cu atoms. The selective leaching of Cu 

from AuCu3-I NPs was also observed to be significantly slower than that from AuCu3-A 

NPs during percolation dealloying, resulting in the formation of thicker ligaments and 

smaller overall particle sizes in comparison to the fully dealloyed AuCu3-A NPs. 

Although the majority of Cu atoms in the AuCu3-A and AuCu3-I NPs were 

galvanically replaced by Au atoms within 1 minute, the NPs continued to undergo 

domain coarsening processes and evolved into thermodynamically more stable structures 

driven by Ostwald ripening, a phenomenon first observed by Wilhelm Ostwald back in 

1896.
49

 During a typical Ostwald ripening process, smaller nanocrystals are dissolved and 

re-deposited onto larger nanocrystals, resulting in the growth of larger NPs at the expense 

of smaller NPs.
75,76

 For a solid nanocrystal suspended in a liquid, the chemical potential 

of atoms at the solid/liquid interface increases with decreasing particle size, and the 

solute concentration at equilibrium for a small particle is therefore much higher than for a 

large particle. Such differences in the local equilibrium concentrations, due to variations 

in particle sizes and surface curvatures, set up concentration gradients that drive the 

Ostwald ripening. The growth rate of the larger NPs is related to the interfacial energy, σ, 
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the molar volume, Vm, the solubility, Cꝏ, and the diffusion coefficient, D, of the particle 

material, as shown in the following equation 
75
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                                                                               (4), 

where r is the radius of the NP, t is time, R is the ideal gas constant, and T is the absolute 

temperature. kd is the rate constant of surface deposition reaction obeying simple first-

order kinetics.  rb is defined as the critical radius, which separates the smaller particles 

(r< rb) shrinking in size from the larger growing particles (r>rb). For a given 

material/solvent system, the values of σ, Vm, D, kd, and rb are all essentially fixed. 

However, the kinetics of particle coarsening can be further maneuvered through 

modulation of Cꝏ by coupling Ostwald ripening with deliberately designed redox 

reactions.
76

 In this case, we found that the Ostwald ripening of the NPs after completion 

of GRRs was essentially triggered by the excessive HAuCl4 in the solution, which 

significantly increased the solubility, Cꝏ, of Au through a reversible disproportionation 

reaction as shown below
77

 

                                                                   (5). 

During Ostwald ripening, the bicontinuous spongy NPs underwent a ligament 

coarsening processes and eventually transformed into nanocups as the ligaments 

coalesced into a continuous shell, leaving one side of the shell open (Figure 5.4F). 

The fragmented Au ligaments formed upon GRR of AuCu3-I NPs also underwent 

domain coarsening to form larger particles with faceted surfaces (Figure 5.4H). 

Interestingly, when the bicontinuous spongy NPs were separated from the reaction 

mixtures through centrifugation and redispersion in water immediately after the GRRs 

went to completion, the Ostwald ripening became kinetically sluggish because of limited 

2Au + 4
- 3Au+ + 4Cl

-
AuCl
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solubility of Au in pure water and thus, the bicontinuous spongy morphology was well-

preserved even after 48 hours (Figure 5.5). 

 

 

Figure 5.5. (A) TEM image of spongy NPs obtained after galvanic replacement reaction for 1 

minute and stored in H2O for 48 hours. 1 mL of colloidal AuCu3-A NPs was first mixed with 150 

µL of 10 mM HAuCl4 for 1 minute. Then the resulting NPs were centrifuged, redispersed in H2O, 

and stored in in H2O for 48 hours. (B) Optical extinction spectrum of NPs obtained after galvanic 

replacement for 1 minute and stored in H2O for 48 hours (solid blue curve). The extinction 

spectra of NPs obtained after exposure of AuCu3-A NPs to 150 µL of 10 mM HAuCl4 for 1 

minute (black dash curve) and 48 hours (red dash curve) were also shown for comparison.    

 

The structural evolution during Ostwald ripening could also be tracked based on the 

temporal evolution of optical extinction spectral features (Figure 5.4D). The spongy NPs 

exhibited a characteristic broad plasmon resonance band spanning much of the visible 

and near infrared spectral regions,
78

 which progressively blue shifted as the ligaments 

underwent the coarsening process. The Ostwald ripening of the fragmented ligaments 

also led to blue-shift of the plasmon resonance bands, though the spectral shift was much 

less significant in comparison to that of the bicontinuous spongy NPs.  

While the kinetics of Ostwald ripening-driven structural evolution could be clearly 

resolved, it remained challenging to directly track the detailed structural evolution of 
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AuCu3-A and AuCu3-I NPs during the kinetically much faster GRRs. Alternatively, we 

titrated the AuCu3-A and AuCu3-I NPs with insufficient amounts of HAuCl4 to trap the 

intermediate structures at various stages of GRRs. We set the reaction time at 30 minutes, 

which was sufficiently long for the establishment of the equilibria upon adequate 

consumption of HAuCl4 available for the GRRs. The GRRs of AuCu3-A NPs with 

HAuCl4 was initiated upon the dissolution of Cu and deposition of Au nanocrystallites at 

the alloy/liquid interfaces, which subsequently induced Kirkendall interdiffusion of Au 

and Cu atoms in the alloy matrices, forming cavities at the alloy/Au interfaces. The 

growth of the Au nanocrystallites and the expansion of the cavities led to the formation of 

a yolk-shell structure composed of a Au-Cu alloy core encapsulated by a polycrystalline 

Au shell (Figure 5.6A). As the GRRs further proceeded, the cavities continued to expand 

accompanied by Au domain coarsening (Figure 5.6B) until the Au domains merged into 

bicontinuous nanoligaments when a sufficient amount of HAuCl4 was available for 

galvanic exchange with Cu (Figure 5.6C). The formation of cavities inside the NPs upon 

Kirkendall diffusion gave rise to significantly increased overall particle sizes.  

The structural evolution of AuCu3-I NPs during GRRs, nevertheless, appeared 

drastically different from that of AuCu3-A NPs because the ordering of the atomic 

configurations effectively suppressed the Kirkendall diffusion process. As a consequence, 

monometallic Au was deposited on the outer surfaces of the intermetallic NPs without 

forming cavities during the GRRs (Figure 5.6D-5.6F). As an increasing amount of Cu 

was exchanged with Au, the surface-deposited Au domains increased in size and the 

intermetallic cores were progressively consumed, eventually evolving into fragmented 

Au ligaments with irregular shapes. When titrating the NPs with insufficient amounts of 
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HAuCl4, the Ostwald ripening process became extremely slow because of depletion of 

HAuCl4 in the solution upon completion of GRRs, allowing us to well-preserve the as-

formed intermediate nanostructures over extended time periods even without separating 

the NPs from the reaction mixtures. 

We also used PXRD to study the evolution of the crystalline structures of NPs during 

GRRs. A striking difference between the AuCu3-A and AuCu3-I NPs was that the atomic 

fractions of Cu in the alloy domains of the NPs progressively decreased (Figure 5.6G), 

whereas the Au/Cu atomic ratios and the ordered atomic configurations of the 

intermetallic domains were both well-preserved (Figure 5.6H) as the galvanic exchange 

between Cu and Au proceeded, further verifying that the formation of atomically ordered 

intermetallic structures effectively suppressed the Kirkendall diffusion, restricting the 

atomic exchange and migration exclusively at the evolving NP/liquid interfaces. We 

further used the linear-sweep-voltammetry (LSV) to measure the onset potentials for Cu 

dissolution from the AuCu3-A and AuCu3-I NPs (Figure 5.6I). The alloying of Cu with 

Au at the Au/Cu ratio of 1:3 positively shifted the onset potential by about 0.1 V, and the 

atomic ordering of the alloy NPs further positively shifted the onset potential by about 

0.2 V, further proving that the Cu atoms in the AuCu3-I NPs were significantly less 

mobile and thus more resistive against migration and leaching than those in the AuCu3-A 

NPs. Although AuCu3-A and AuCu3-I NPs underwent distinct structure-transforming 

processes during GRRs, they exhibited similar fractions of Cu exchanged with Au when 

titrated with the same amount of HAuCl4 (Figure 5.6J), suggesting that the ordering of 

the atomic configurations of the NPs slowed down the atomic interdiffusion process 

without significantly shifting the equilibria of the GRRs. 
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Figure 5.6. GRR-induced structural transformations of AuCu3 alloy and intermetallic NPs. 

(X-a, X = A, B, C) SEM and (X-b) TEM images of NPs obtained by titrating 1 mL colloidal 

AuCu3-A NPs with (A) 10 µL, (B) 30 µL and (C) 100 µL of 10 mM HAuCl4. (Y-a, X = D, E, F) 

SEM and (Y-b) TEM images of NPs obtained by titrating 1 mL colloidal AuCu3-I NPs with (D) 

10 µL, (E) 30 µL, and (F) 100 µL. All the SEM images share the same scale bar in Panel A-a, and 

all the TEM images share the same scale in Panel A-b. The reaction time was 30 minutes. PXRD 

patterns of NPs obtained by titrating (G) AuCu3-A NPs and (H) AuCu3-I NPs with various 

volumes of 10 mM HAuCl4. The standard diffraction patterns for bulk Au, Cu, and AuCu3-I are 

also included. The spectra were offset for clarity. (I) LSV curves of Cu, AuCu3-A, and AuCu3-I 

NPs supported on glassy carbon electrodes in 0.5 M H2SO4 electrolyte in the potential sweep 

range from 0 V to 0.7 V (vs. SCE) at a sweep rate of 50 mV s
-1

. (J) Cu atomic % of NPs obtained 

by titrating 1 mL colloidal AuCu3-A and AuCu3-I NPs with various volumes of 10 mM HAuCl4. 

 

In the case of Cu-rich AuCu3-A and AuCu3-I NPs, the GRRs and Ostwald ripening 

were kinetically distinguishable because they took place over two drastically different 

time scales. According to the Darken’s equation, decreasing the Cu/Au stoichiometric 

ratio of the NPs should decelerate the GRRs with respect to Ostwald ripening. It has been 
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recently shown that the kinetics of GRRs occurring on colloidal Cu-Au bimetallic 

nanorods are sensitively dependent upon the local Cu/Au atomic ratios and an 

asymmetric hollowing process was observed due to the intrinsic compositional gradient 

in the nanorods.
79,80

 For AuCu-A and AuCu-I NPs, both GRRs and Ostwald ripening 

were observed to occur concurrently over the same time scale. Because their Cu atomic 

fractions were below the parting limit for percolation dealloying, both AuCu-A and 

AuCu-I NPs underwent a surface dealloying process upon exposure to 1 M HNO3, 

forming a surface passivating Au atomic layer that inhibited further leaching of Cu from 

the NPs. Interestingly, when exposing the AuCu-A NPs to excessive HAuCl4, the GRR-

induced Kirkendall diffusion effectively triggered the migration of Cu atoms from the NP 

interior to the NP/liquid interfaces, allowing the dealloying to proceed continuously until 

all Cu were galvanically replaced by Au. Upon initiation of GRRs, the AuCu-A NPs first 

underwent a hollowing and volume expansion process to transform into a yolk-shell 

structure (Figure 5.7A) due to the dealloying and Kirkendall effects. The rate of 

Kirkendall atomic diffusion in the AuCu-A NPs should be slower than that in AuCu3-A 

NPs because of the smaller compositional gradient across the alloy/Au interfaces. 

Therefore, GRRs of AuCu-A NPs with HAuCl4 resulted in cavity volumes significantly 

smaller than those in the bicontinuous spongy NPs derived from AuCu3-A NPs. In 

addition, the GRR-induced structural transformations of AuCu-A NPs was entangled 

with the Ostwald ripening-driven domain coarsening, resulting in the formation of 

continuous Au-rich shells instead of the bicontinuous nanoligaments. As the GRRs 

further proceeded, the alloy domains became fully dealloyed while the Au-rich shells 

became significantly thicker, resulting in the formation of nanocups, each of which was 
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composed of a cavity enclosed by an Au-rich shell with an opening on one side (Figure 

5.7B). The nanocups further evolved into thermodynamically more stable solid quasi-

spherical NPs essentially driven by Ostwald ripening (Figure 5.7C). Ostwald ripening-

driven surface remodeling of the quasi-spherical NPs eventually led to the formation of 

thermodynamically more favored {111} and {100} crystallographic facets when the NPs 

were aged in the reaction mixtures for a few days (Figure 5.8). In striking contrast to the 

AuCu-A NPs, AuCu-I NPs evolved into heterostructured quasi-spherical core-shell NPs, 

each of which was composed of a AuCu intermetallic core surrounded by a monometallic 

Au shell (Figure 5.7D). The absence of observable hollowing process during the GRRs of 

AuCu-I NPs with HAuCl4 suggested that the Kirkendall atomic interdiffusion was 

suppressed due to the formation of the intermetallic phases. As the reaction time further 

increased, the surfaces of the quasi-spherical core-shell NPs became increasingly faceted 

due to Ostwald ripening (Figures 5.7E and 5.7F). Such Ostwald ripening-driven faceting 

of NPs became unobservable when the AuCu-A and AuCu-I NPs were exposed to 

insufficient amounts of HAuCl4 for GRRs because of the elimination of Ostwald ripening 

upon depletion of HAuCl4 (Figure 5.9). The spatial distributions of Au and Cu atoms in 

the yolk-shell and core-shell NPs were mapped by correlated SEM/EDS. The structural 

and compositional evolutions of the AuCu-A and AuCu-I NPs were further tracked using 

ex situ PXRD (Figures 5.7G and 5.7H) and EDS elemental analysis (Figure 5.7I), both of 

which clearly showed that the leaching of Cu from AuCu-I NPs was significantly slower 

than that from AuCu-A NPs, further verifying that structural ordering slowed down the 

rate of Au and Cu atomic interdiffusion. 
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Figure 5.7. Structural and compositional evolutions of AuCu alloy and intermetallic NPs 

during GRRs. (X-a, X = A, B, C) SEM and (X-b) TEM images of NPs obtained after mixing 1 

mL colloidal AuCu-A NPs with 150 µL of 10 mM HAuCl4 for (A) 30 minutes, (B) 9 hours, and 

(C) 48 hours. (Y- a, X = D, E, F) SEM and (Y-b) TEM images of NPs obtained by mixing 1 mL 

colloidal AuCu-I NPs with 150 µL of 10 mM HAuCl4 for (D) 30 minutes, (E) 9 hours, and (F) 48 

hours. All the SEM images share the same scale bar in Panel A-a, and all the TEM images share 

the same scale in Panel A-b. PXRD patterns of NPs obtained after mixing (G) AuCu-A and (H) 

AuCu-I NPs with HAuCl4 for various reaction times. The standard diffraction patterns for bulk Au, 

Cu, and AuCu-I are also included. Temporal evolutions of (I) Cu atomic % and (J) particle size of 

the NPs after mixing AuCu-A and AuCu-I NPs with 150 µL of 10 mM HAuCl4. (K) LSV curves 

of AuCu-A and AuCu-I NPs in 0.5 M H2SO4 electrolyte at a sweep rate of 50 mV s
-1

.  

 

The sizes of the AuCu-A NPs first increased at the early stage of GRRs due to the 

Kirkendall effects and then progressively decreased as the Ostwald ripening started to 

dominate the structure-transforming process, whereas the particle sizes remained almost 

unchanged throughout the entire process when AuCu-I NPs were exposed to HAuCl4 for 

GRRs (Figure 5.7J). At the Au/Cu atomic ratio of 1:1, the transition of alloy NPs into 
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intermetallic NPs raised the energy barriers for Cu-Au atomic interdiffusion and thereby 

positively shifted the onset potential for Cu dissolution (Figure 5.7K), which was in line 

with the trend observed in the AuCu3-A and AuCu3-I NPs.  

 

Figure 5.8. (A) SEM and (B) TEM images of NPs obtained after mixing 1 mL colloidal AuCu-A 

NPs with 150 µL of 10 mM HAuCl4 for 120 hours. (C) SEM image, (D) TEM image, and (E) 

EDS elemental distribution maps of NPs obtained after mixing 1 mL colloidal AuCu-I NPs with 

150 µL of 10 mM HAuCl4 for 120 hours. 

 

 

Figure 5.9. (A) PXRD patterns of NPs obtained by mixing 1 mL colloidal AuCu-A NPs with 

various volumes of 10 mM HAuCl4 for 30 minutes. TEM images of NPs obtained after mixing 1 

mL colloidal AuCu-A NPs with (B) 20 µL and (C) 40 µL of 10 mM HAuCl4 for 30 minutes. (D) 

PXRD patterns of NPs obtained by mixing 1 mL colloidal AuCu-I NPs with various volumes of 

10 mM HAuCl4 for 30 minutes. TEM images of NPs obtained after mixing 1 mL colloidal AuCu-

I NPs with (B) 20 µL and (C) 40 µL of 10 mM HAuCl4 for 30 minutes. 
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Figure 5.10. TEM images of (A) Au@Cu2O core-shell NPs (average core diameter of 107 nm 

and shell thickness of 10 nm), and (B) Au3Cu alloy NPs (denoted as Au3Cu-A NPs). (C) PXRD 

pattern of Au3Cu-A NPs. The standard diffraction patterns for bulk Au and Cu were also included. 

(D) Particle size distributions of Au@Cu2O core-shell NPs and Au3Cu-A NPs. (E) EDS spectrum 

and (F) EDS elemental distribution maps of Au3Cu-A NPs. 

 

 

Figure 5.11. (A) PXRD patterns of NPs obtained after mixing Au3Cu-A NPs with 150 µL of 10 

mM HAuCl4 for various reaction times.  (B) SEM and (C) TEM images of NPs obtained after 

mixing Au3Cu-A NPs 150 µL of 10 mM HAuCl4 for 9 hours. (D) Temporal evolutions of Cu 

atomic % and particle size during GRRs. (E) LSV curves of Au and Au3Cu-A NPs in 0.5 M 

H2SO4 electrolyte at a sweep rate of 50 mV s
-1

. 
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We further investigated the GRR-driven structural transformations of Au-rich alloy 

NPs with a Au/Cu atomic ratio of 3:1 (Figure 5.10). For the Au3Cu alloy NPs, both Cu 

leaching and Kirkendall diffusion became kinetically much slower than that in the AuCu-

A NPs. Therefore, the Au3Cu alloy NPs transformed into alloy core-Au shell NPs 

through a GRR-driven structural evolution process similar to that of the AuCu-I NPs. 

Neither cavity formation nor particle size expansion was observed on the Au3Cu alloy 

NPs throughout the entire GRR process (Figure 5.11).  

5.4 Conclusion 

This work exemplifies how classic effects and paradigms, when applied to 

nanoparticulate materials systems, can be revisited from a different perspective and 

interlinked within a coherent conceptual network to generate new insights into the 

complex mechanisms underpinning the intriguing atomic exchange, matter relocation, 

and structural remodeling processes both at the atomic and nanoparticulate levels. Using 

the atomically intermixed Au-Cu bimetallic NPs as a model materials system, we have 

demonstrated that the versatile structural evolutions of multimetallic NPs driven by 

GRRs are synergistically dictated by three intertwining structure-transforming processes, 

dealloying, Kierkendall diffusion, and Ostwald ripening. Through systematic 

comparative studies, we have identified the compositional stoichiometries and the 

atomic-level structural ordering of the bimetallic NPs as two key factors that kinetically 

maneuver the dealloying and Kirkendall diffusion processes during GRRs, while the rate 

of the Ostwald ripening-driven domain coarsening can be further modulated by coupling 

the GRRs with reversible disproportionation reactions. Because dealloying, Kirkendall 

diffusion, and Ostwald ripening are all broadly involved in the growth, deformation, and 
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restructuring of a large library of multimetallic NPs, the insights gained from this work 

may serve as a bridge transcending our current knowledge gaps and blind zones toward 

thorough understanding of nanoscale structural transformations when revisiting the ample 

examples already existing in the literature. This work also provides generic design 

principles guiding the rational development of new synthetic approaches to multimetallic 

nanostructures with further enhanced architectural complexity, compositional diversity, 

and property tunability.   
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CHAPTER 6 

ELECTROCATALYTICALLY ACTIVE TRIMETALLIC SPONGY 

NANOPARTICLES WITH ULTRATHIN LIGAMENTS  
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6.1 Introduction 

Galvanic replacement provides a versatile pathway to controllably transform a solid 

monometallic nanoparticle (NP) into a diverse set of architecturally more sophisticated 

multimetallic hollow nanostructures.
1-4

 Galvanic replacement occurring on metallic 

nanoparticles (NPs) is essentially a unique nanoscale redox process that are unrealizable 

for bulk material systems, in which less noble metals get oxidized and dissolved 

accompanied by the reduction and deposition of noble metals on the sacrificial template 

surfaces. The resulting architectures are essentially determined by the intrinsic nature of 

sacrificial templates including redox potential, lattice mismatch between the replaced and 

deposited metals, atomic interdiffusion during the reaction, as well as the external effects 

companied with the reaction like chemical leaching, co-reduction, or surface passivation 

under the conditions that galvanic replacement occur. Over the past two decades, great 

success in synthesis of a diverse set of multimetallic hollow nanostructures, such as 

nanobox, nanocage, or nanoframe has been achieved using single-crystalline Ag 

nanocubes as sacrificial templates.
5,6

 While by employing sophisticated multimetallic 

heteronanostructures as the sacrificial templates, well-defined nanoparticles with more 

complicated interior and surface architectures, such as yolk-shell nanorattles,
7,8

 

multilayered nanomatryoshkas,
8-10

 and ultrathin skeletal nanoframes 
11,12

 could also be 

able to achieve.  

Atomically intermixed bimetallic nanocrystals adopting either disordered alloy 

configurations or ordered intermetallic structures 
13-15

 may undergo galvanic replacement 

reaction-driven structural transformations that are substantially more sophisticated and 

versatile than those of monometallic nanocrystals or phase-segregated bimetallic 
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heteronanostructures, when key structure-evolutionary pathways, less-noble metal 

dealloying, new noble-metal deposition, and Kirkendall diffusion are taken into 

considerations. Here we endeavor to further push the structural and compositional control 

of multimetallic hollow nanostructures to a new level of precision and sophistication by 

coupling the percolation dealloying with galvanic replacement by using bimetallic NPs as 

initial sacrificial templates. We show that spongy NPs with ultrathin nanoligaments 

comprising Au-Cu alloy cores and Au-Pt alloy shells could be controllably synthesized 

by galvanic replacement of Au0.2Cu0.8 alloy with H2PtCl6. The thickness and the 

composition of the ligament could be precisely tailored by control over the leaching rate 

of Cu versus galvanic replacement rate. The unique ligaments feature greatly enhances 

the structural stability of the active sites on the ligament surfaces, allowing us to retain 

the superior catalytic activities over much longer periods toward alcohol oxidation in 

both acidic and alkaline environments relative to the commercial Pt black. 

6.2 Experimental Section 

Materials Polyvinylpyrrolidone (PVP, average MW 58 000), chloroauric acid 

(HAuCl4·4H2O), copper nitrate hydrate (Cu(NO3)2·3H2O), and tetraethylene glycol (TEG) 

were purchased from Alfa Aesar. Hydrazine solution (N2H4·3H2O 35 wt %), nitric acid 

(HCl 37%), sulfuric acid (H2SO4 98%), chloroplatinic acid hexahydrate (H2PtCl6·6H2O), 

and Nafion perfluorinated resion solution (5 wt%) were purchased from Sigma-Aldrich. 

Potassium carbonate (K2CO3) and formaldehyde (37 wt%) were purchased form J.T. 

Baker. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) was purchased from 

Fisher Scientific. All reagents were used as received without further purification. 

Ultrapure Milli-Q water with a resistivity of 18.2 MΩ (Millipore) was used for all the 
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experiments. 

Synthesis of Au-Cu Alloy NPs  Quasi-spherical Au nanoparticles (QSNPs) were first 

synthesized by reducing HAuCl4 with formaldehyde at room temperature. In a typical 

procedure, 50 mg of K2CO3 was dissolved in 200 mL of water, followed by addition of 3 

mL of 25 mM HAuCl4. The mixture solution was aged in the dark for 18 h before use. 

Then 1.34 mL of 37 % formaldehyde solution was added into the mixture under magnetic 

stir (300 rpm). After 30 min, the resulting Au QSNPs were centrifuged, washed with 

water, and redispersed in 10 mL of water.  

Then 1.0 mL of Au QSNPs was introduced into 100 mL of 2 wt% PVP aqueous 

solution. 0.4 mL of 0.1 M Cu(NO3)2 was subsequently added. The reaction mixture was 

transferred into an ice bath, and then 0.22 mL of 5 M NaOH and 0.11 mL of N2H4·3H2O 

solution were added in successive under magnetic stir. The solutions were kept stirring 

for 15 min, and the obtained Au@Cu2O core-shell nanoparticles were separated from the 

reaction solution by centrifugation (2000 rpm, 10 min) washed with ethanol and 

redispersed in 1.0 mL ethanol. 

Au-Cu alloy nanoparticles were prepared through a polyol-assisted growth method. 

Typically, 1.0 mL of Au@Cu2O core-shell NPs was added into 15 mL TEG containing 

0.1 g PVP. Au-Cu alloy nanoparticles were obtained by heating the mixture at 300 
o
C for 

30 min. The obtained nanoparticles were washed with ethanol five times, and finally 

redispersed in 2.0 mL of water. 

Galvanic Replacement of Au-Cu Alloy NPs with H2PtCl6 In a typical galvanic 

replacement reaction, 100 L of an aqueous suspension of Au-Cu alloy NPs were added 

into 1.0 mL of 2 wt % PVP aqueous solution in a small glass vial. Then 100 L of 10 
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mM H2PtCl6 and 100 L of HCl with varying concentrations (0.01 M, 0.02 M, 0.05 M, 

0.1 M, or 0.2 M) were subsequently added into the solution. The mixture was kept at 60 

o
C under magnetic stirring for 30 min. The resulting NPs were separated by 

centrifugation and washed with water three times and dispersed into 20 L water for 

further characterization and electrochemical measurement. 

Structural Characterizations of NPs  The morphologies and structures of the NPs 

were characterized by transmission electron microscopy (TEM) using a Hitachi H-8000 

transmission electron microscope, which was operated at an accelerating voltage of 200 

kV. All samples for TEM measurements were dispersed in ethanol and drop-dried on 200 

mesh carbon-coated-Ni grids (Electron Microscopy Science Inc.). High-angle annular 

dark-field scanning electron microscopy (HAADF-STEM) imaging of spongy NPs drop-

dried on Ni grids with ultrathin carbon support film were carried out using a JEOL 2100F 

200 kV FEGSTEM/TEM microscope equipped with a CEOS CS corrector on the 

illumination system. The structures and compositions of the NPs were also characterized 

by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) 

measurements using a Zeiss Ultraplus thermal field emission scanning electron 

microscope. The samples for SEM and EDS measurements were dispersed in ethanol and 

drop-dried on silicon wafers. The size distribution histograms were obtained from more 

than 100 NPs for each sample. Powder X-ray diffraction (PXRD) patterns were record on 

a SAXSLab Ganesha at the South Carolina SAXS Collaborative (Cu Kα = 1.5406 Å). 

XPS measurements were carried out using a Krato AXIS Ultra DLD XPS system 

equipped with a monochromatic Al Kα source. The samples for XPS measurements were 

all freshly prepared and dried in vacuum before being loaded into the XPS chambers. A 
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Finnigan ELEMENT XR double focusing magnetic sector field inductively coupled 

plasma-mass spectrometer (SF-ICP-MS) was used for the analysis of Cu (65, MR), Au 

(197, MR), and internal standard Rh (103 MR). A 0.2 mL min
-1

 Micromist U-series 

nebulizer (GE, Australia), quartz torch, and injector (Thermo Fisher Scientific, USA) 

were used for sample introduction. Sample gas flow was at 1.08 mL min
−1

. The 

forwarding power was 1250 W. The samples for ICP-MS measurements were prepared 

by adding 1 mL of nitric acid and 3 mL of hydrochloric acid into Teflon digestion vessels 

containing the NP samples. The samples were digested using hot block at 180 °C for 4 h. 

The digestates were brought to 50 mL with water. A 3-point calibration curve was used 

for Cu, Au and Pt. The calibration range was from 50 to 600 ppb. The R
2
 values for the 

initial calibration curves were greater than 0.995. 

Electrochemical Measurements All the electrochemical measurements were 

performed using a CHI 660E workstation (CH Instruments, Austin, Texas) at room 

temperature with a three-electrode system composed of a Pt wire as the auxiliary, a 

saturated calomel electrode (SCE) as the reference, and a glassy carbon electrode (GCE, 

3 mm diameter) as the working electrode. Typically, the GCE was polished with 0.3 mm 

alumina slurry and followed by washing with water and ethanol before use. Colloidal 

suspensions containing 5.0 μL Au-Cu-Pt trimetallic spongy colloidal NPs were dropped 

and air-dried on the pretreated GCEs at room temperature, and then 2 μL of Nafion 

solution (0.2 wt%) was dropped to hold the NPs. The electrochemically active surface 

area (ECSAs) were determined by integrating the hydrogen desorption charge on the CV 

at room temperature in N2-saturated 0.5 M H2SO4 solution at a potential sweep rate of 50 

mV s
-1

. The polarization trace was normalized against the Pt mass of the spongy NPs 
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loaded on each electrode. To evaluate the electrocatalytic activities of the Au-Cu-Pt 

trimetallic spongy NPs toward alcohol oxidation, cyclic voltammetry (CV) measurements 

were performed in a N2-saturated 0.5 M H2SO4 or 0.5 M KOH electrolytes containing 1.0 

M methanol, 1.0 M ethanol, or 1.0 M iso-propanol at a potential sweep rate of 50 mV s
-1

. 

To assess the electrocatalytic durability of the Au-Cu-Pt trimetallic spongy NPs, multiple 

CV cycles were carried out in 1.0 M methanol, 1.0 M ethanol, or 1.0 M isopropanol in 

the presence of 0.5 M H2SO4 or 1 M KOH electrolytes.  

6.3 Results and Discussions 

The model materials system we start with is the Au-Cu alloy nanoparticles obtained by 

thermal heating of Au@Cu2O core-shell nanoparticles in tetraethylene glycol (TEG). The 

Au/Cu stoichiometric ratios of the alloy NPs were predetermined by the relative core and 

shell dimensions of their parental core-shell NPs. As shown in Figures 6.1A and 6.1B, 

uniform solid spherical-like Au-Cu alloy nanoparticles with Au/Cu atomic ratio of ~1/4 

has been fabricated. We used high-angle annular dark-field scanning electron microscopy 

(HAADF-STEM) to characterize the structures of the alloy nanoparticle. Panels 6.1 C-a 

and C-b show the high-resolution HAADF-STEM images of two regions in a single Au-

Cu alloy nanoparticle, with the electron beam projected along the [110] zone axis of the 

crystalline domains. The corresponding fast Fourier transform (FFT) patterns further 

confirmed the orientation of the crystalline domains. The lattice fringes corresponding to 

the face center cubic phase of Au-Cu alloy were well resolved (Figure 6.1C). 
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Figure 6.1. (A) SEM image, (B) EDS spectrum, and (C) HAADF-STEM images of Au0.21Cu0.79 

alloy nanoparticles. 

 

Upon expose to an H2PtCl6 aqueous solution containing HCl under air atmosphere, the 

Au0.2Cu0.8 alloy nanoparticles simultaneously undergoes nanoporosity-evolving process 

induced by galvanic replacement with H2PtCl6 and oxidative etching by the O2 dissolved 

in water with the aid of Cl
-
 in an acidic environment, as illustrated in Figure 6.2A.

16-20
 In 

this case, galvanic replacement and percolation dealloying can be considered as two 

completing processes that play intertwining roles in guiding the nanoparticle structural 

evolution. We used high-resolution HAADF-STEM, high resolution STEM-energy-

dispersive spectroscopy (EDS) measurements, powder X-ray diffraction (PXRD), EDS, 
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inductively coupled plasma mass spectrometry (ICP-MS), and X-ray photoelectron 

spectroscopy (XPS) to characterize the structure and morphology of the nanospongy 

particles. After exposing Au0.21Cu0.79 alloy nanoparticles to an aqueous solution 

containing 2.8 mM HCl and 2.8 mM H2PtCl6 at 60 
0
C for 1 hour, the HAADF-STEM 

images clearly show that the alloy nanoparticles transform into spongy nanoparticles with 

voids throughout the entire particle comprising ultrathin ligaments with average thickness 

of only ~ 3 nm (denoted as NS-i, Figures 6.2B-6.2D). High resolution STEM-EDS 

measurements reveal that each ligament is composed of a Au-Cu alloy core about 1.6 nm 

thick encapsulated by a sub-nm thick Au-Pt alloy skin (Figures 6.2E-6.2G). The Au-Pt 

alloy skin working as passivation layers prevents the further Cu leaching from the Au-Cu 

alloy matrix. This unexpected approach for formation of Au-Pt alloy skin paved a way to 

further optimize the property of porous Au nanoparticles since bulk Au and Pt are 

thermodynamic totally immiscible over a wide composition range, and the fabrication of 

Au-Pt alloy nanostructure has been thought to be a huge challenge simple “bottom-up” 

methods.
21,22

 Figures 6.2E and 6.2F show the high-resolution HAADF-STEM images of 

two regions of one single spongy particle, with the electron beam projected along the 

[011] zone axis of the crystalline domains. The corresponding fast Fourier transform 

(FFT) patterns further confirmed the orientation of the crystalline domains in the 

ligaments. The lattice fringes corresponding to the face center cubic phase of Au-Pt and 

Au-Cu alloy were well resolved in the high-resolution HAADF-STEM images. The inset 

of Figure 6.2F showed the EDS line scan profile as well as the EDS (Figure 6.2G) 

obtained from a single untrathin ligament, which provides further evidence of core-shell 

cable structure of the ligaments.  
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Figure 6.2. Atomic-level surface structures of Au-Cu-Pt trimetallic spongy NPs. (A) 

Illustration of the transformation of Au0.21Cu0.79 into spongy NP with ultrathin ligaments. (B) 

HAADF-STEM image of Au-Cu-Pt trimetallic spongy NPs. (C) HAADF-STEM image of an 

individual Au-Cu-Pt trimetallic spongy NP. (D) High-resolution HAADF-STEM image of the 

selected region shown in C. The inset shows the ligament thickness distribution of Au-Cu-Pt 

trimetallic spongy NP. (E) High-resolution HAADF-STEM image showing the atomic-level 

structures of the selected region from the individual NP in the inset. The inset show the FFT 

pattern and HAADF-STEM image of the corresponding individual Au-Cu-Pt trimetallic spongy 

NP. In the high-resolution HAADF-STEM images, the crystalline domains were projected along 

the [011] zone axis. (F) High-resolution HAADF-STEM image of the selected region from the 

individual particle shown in E. The inset shows EDS line scan elemental analysis of a single 

ultrathin ligament. (G) EDS spectrum of the single ultrathin ligament.  

 

The diffraction peaks corresponding to the fcc Au0.2Cu0.8 alloy split into two sets of fcc 

diffraction peaks, which could be assigned to the fcc Au-Cu and Au-Pt alloy structures 

(Figure 6.3A). PXRD results further confirms the Au-Cu cores and Au-Pt alloy shells of 

ligaments and the small feature sizes of the ligaments are manifested by the significant 

broadening of the diffraction peaks. 
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Figure 6.3. (A) XRD pattern of Au-Cu-Pt trimetallic spongy NPs (NS-i) synthesized through 

galvanic replacement of Au0.21Cu0.79 alloy NPs with H2PtCl6 aqueous solution containing 2.8 mM 

HCl concentrations. The standard XRD patterns of bulk Au, Cu, and Pt are also included. (B) 

EDS spectrum of NS-i. The inset shows the SEM image of NS-i. XPS of (C) Au 4f, (D) Pt 4f, and 

(E) Cu2p regions of NS-i. The vertical dash lines indicate the peak positions of standard bulk Au, 

Pt, and Cu. 

 

The stoichiometric quantification of Pt0.24Au0.38Cu0.38 trimetallic spongy nanoparticles 

determined by EDS is consistent well with the result measured by ICP-MS (Figure 6.3B). 

While the Pt-to-Au atomic ratio quantified by XPS (Pt0.58Au0.31Cu0.11) were higher than 

the bulk atomic ratio obtained from EDS, further suggesting that the formation of Au-Pt 

layers on the ligament surfaces. The binding energies of the Pt 4f peaks slightly down 

shift with respect to those of bulk Pt, whereas both the Cu 2p and Au 4f peaks slightly 

down-shifted with respect to those of bulk Cu and Au, indicating that the Au alloyed with 

Pt (Figures 6.3C-6.3E).
23

 The existence of Au-Pt overlayers probably make a significant 
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contribution to the stabilization of the porous structure. It has been recently observed that 

a small amount of Pt atoms on nanoporous Au surface could greatly stabilize the 

nanostructure during electrocatalytic reactions.
24

 It has also been reported that residual Pt 

could effectively stabilize the large surface active area of nanoporous Au during 

dealloying,
25

 which was correlated to a much slower surface diffusion rate of Pt as 

compared with Au.
26

 

 

Figure 6.4. UV-visible-near infrared spectra of the supernatant after GRRs between Au0.21Cu0.79 

alloy NPs and 200 μL of 10 mM H2PtCl6. The NPs were separated from the supernatant through 

centrifugation. To distinguish Cu(I) and Cu(II) ionic species in the supernatant, 200 μL of 100 

mM BCA (a Cu(I)-targeting ligand) or 200 μL of 1 M NH4OH (a Cu(II)-targeting ligand) were 

added into 1 mL of the supernatant. Upon addition of BCA into the supernatant, the solution color 

turned pink and an absorption peak at 560 nm emerged, which was the characteristic peak of Cu 

(I)-BCA complexes. This indicated that the metallic Cu in the alloy NPs was oxidized into Cu(I) 

after the GRRs, which was further verified by the directly mixing 1.2 mL of 1 mM Cu(NO3)2 with 

200 μL of 1 M ammonia. The characteristic absorption peak (centered at 650 nm) of Cu(II)-

ammonia complex was not observed upon addition of NH4OH, indicating the absence of Cu(II) 

ionic species in the supernatant. 

 

Under the current experimental conditions, Cu was oxidized into Cu(I) rather than 

Cu(II) ionic species while Pt(IV) was reduced to metallic Pt through galvanic 

replacement, exhibiting a net reaction outcome of every four Cu atoms substituted by one 

Pt atom. Meanwhile, the percolation dealloying in HCl also resulted in formation of Cu(I) 

ions, which form a complex with bicinchoninic acid (BCA) with a characteristic 
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absorption band around 550 nm
27

 and no Cu(II) ions at detectable concentration levels 

have been identified by titration excessive ammonia into the supernatant after reactions 

(Figure 6.4).  

 

Figure 6.5. Structure and composition of Au-Cu-Pt trimetallic spongy NPs. TEM images of 

Au-Cu-Pt trimetallic spongy NPs synthesized through galvanic replacement of Au-Cu alloy NPs 

with H2PtCl6 aqueous solution containing various concentrations of HCl. (A) 2.8 mM, (B) 3.6 

mM, (C) 5.7 mM, (D), 10 mM, (E) 30 mM. (F) XRD patterns of Au-Cu-Pt trimetallic spongy 

NPs synthesized through galvanic replacement of Au-Cu alloy NPs with H2PtCl6 aqueous 

solution containing various HCl concentrations. The standard XRD patterns of bulk Au, Cu, and 

Pt are also included. (G) Atomic ratio evolutions of Pt and Cu during the GRR with the increase 

of HCl concentration. (H) CV curves of various spongy NPs in 0.5 M H2SO4 at a potential sweep 

rate of 50 mV s
−1

. The currents were normalized against the Pt mass loaded on each electrode. (I) 

ECSA of various spongy NPs estimated based on the hydrogen desorption peak area.  

 

We can systematically tailor the atomic ratios of the dealloyed nanospongies without 

obvious morphological changes by control over the percolation dealloying and galvanic 

replacement kinetics through changing the molar ratio between HCl and H2PtCl6 during 



www.manaraa.com

166 
 

the porosity-evolving process. We use TEM and PXRD to monitor the structural and 

compositional evolutions of the Au-Cu alloy structures with the increasing of the HCl 

concentration during the reaction. While no obvious morphological changes were 

observed from the TEM images (Figures 6.5A-6.5E), it is clear to see a striking 

difference in PXRD patterns (Figure 6.5F). The diffraction peaks of Au-Pt phase 

gradually shift to pure Au, indicating a progressively decreased Pt fraction of nanospongy 

particles with HCl concentration increase, whereas Au-Cu alloy phase remains almost 

unchanged as a consequence of the formation of passivated Au-Pt layer which prevented 

the further Cu leaching. The atomic fractions of Au, Pt, and Cu for various nanospongies 

from NS-i to NS-v quantified by EDS and ICP-MS keep a good consistence (Table 1). 

The ratio between leached Cu induced by HCl (denoted as Lcu) and replaced Cu by 

H2PtCl6 (denoted as RCu) reflects relative rate of percolation dealloying with respect to 

that of galvanic replacement. The Pt/Au atomic ratio kept decreasing with the HCl 

concentration increase, while the total loss Cu content increased first and then decreased. 

Based on the quantification results, we are able to calculate the ratios of Cu atoms 

leached (Lcu) with respect to those galvanically replaced by Pt (RCu) using the Au quantity 

as internal reference. As shown in Figure 6.5G, the LCu/RCu gradually increases with the 

increase of HCl amount during the reaction because a higher HCl concentration 

accelerates the Cu leaching while the galvanic replacement reaction keeps unchanged. 

We also used cyclic voltammetry (CV) as an electrochemical characterization tool to 

compare the specific surface areas and surface atomic structures of various nanospongies 

(Figure 6.5H). The peaks appearing in the range from -0.23 to 0.15 V are attributed to 

hydrogen underpotential formation/stripping (HUPD) and are used to estimate the 
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electrochemically active surface area (ECSA) of the NSs by assuming the charge density 

passed during the hydrogen adsorption was 210 μC/cm
2
 for a flat Pt surface.

28
 The peaks 

at 0.3-0.6 V originate from oxidation and reduction of surface Pt atoms. The ECSA first 

increased and then decreased as an increasing amount of HCl concentration and NS-ii 

exhibited the largest ECSA among the NS samples. The ECSA of NSs was calculated to 

be 70.5, 86.1, 79.4, 58.4, 42.4 m
2
/g for NS-i, NS-ii, NS-iii, NS-iv, and NS-iv respectively, 

all of which are higher than that of commercial Pt black which is estimated to 35.1 m
2
/g 

(Figure 6.5I). 

 

Figure 6.6. CV curves obtained on a GCE loaded with NS-i in deoxygenated solution containing 

(A) 0.5 M H2SO4 and (B) 1.0 M KOH without methanol, a naked GCE in deoxygenated 0.5 M 

H2SO4 and 1.0 M KOH and 1 M methanol. The potential sweep rate was 50.0 mV s
-1

. 

 

We used room-temperature electro-oxidation of alcohols in both acidic and alkaline 

environments as model reactions to assess the electrocatalytic performances of the 

obtained NS particles. The glassy carbon electrode (GCE) itself was electrocatalytically 

inert neither in H2SO4 or KOH electrolytes (Figures 6.6A and 6.6B), while spongy 

nanoparticles exhibited remarkable electrocatalytic activities toward the methanol 

oxidation reaction (MOR), ethanol oxidation reaction (EOR), and isopropanol oxidation 
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reaction (i-POR). 

 
 

Figure 6.7. CV curves of various spongy NPs and commercial Pt black in N2-saturated 0.5 M 

H2SO4 electrolyte solutions containing (A) 1 M methanol, (B) 1 M ethanol, and (C) 1 M 

isopropanol. The potential sweep rate was 50.0 mV s
−1

. Mass activities and specific activities of 

various spongy NPs and commercial Pt black for the 1st sweep cycle and after multiple sweep 

cycles in in N2-saturated 0.5 M H2SO4 electrolyte solutions containing (D) 1 M methanol, (E) 1 

M ethanol, and (F) 1 M isopropanol.  

 

CV results clearly show that almost all the NSs with different compositions are 

electrocatalytically more active than commercial Pt black in N2-saturated 0.5 M H2SO4 

electrolyte solutions containing 1 M methanol, 1 M ethanol, and 1 M isopropanol 

(Figures 6.7A-6.7C), exhibiting lower onset and peak oxidation potentials and higher 

peak currents during the anodic sweeps. A second oxidation peak emerged during the 

cathodic sweeps resulted from the further oxidation of surface-adsorbed carbonaceous 

species not fully oxidized during the previous anodic sweeps.
29,30

 By normalizing the 

oxidation peak current against the mass of Pt on each electrode, mass activities (MAs) of 

various NSs were calculated, which were obvious higher than that of the commercial Pt 
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black. The superior electrocatalytic activity toward alcohol oxidation reactions observed 

on the porous NSs originated from both their large specific ECSA and high density of 

surface active sites. By normalizing the MAs against ECSAs, the specific activities (SAs) 

of the NPs were obtained, which were directly related to the active site density on the NP 

surfaces. As shown in Figures 6.7D-6.7F, all NSs exhibited larger SAs with respective of 

commercial Pt black. More importantly, the NSs were significantly robust, and both MA 

and SA were well preserved after thousands of CV cycles.  

 

Figure 6.8. CV curves for electrochemical oxide stripping measurements of NS-i before and after 

CA measurements (at 0.6 V vs. SCE for 2 hours, 1 M methanol, 0.5 M H2SO4 electrolyte). 

 

In addition, the CV measurement after multiple cycles further confirmed the well-

preserved active sites and ECSA during the reactions due to the presence of Au-Pt skin 

on the ligament surfaces (Figure 6.8). We also evaluated the catalytic performances of 

NSs in alkaline environment. 
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Figure 6.9. CV curves of various spongy NPs and commercial Pt black in N2-saturated 1 M KOH 

electrolyte solutions containing (A) 1 M methanol, (B) 1 M ethanol, and (C) 1 M isopropanol. 

The potential sweep rate was 50.0 mV s
−1

. Mass activities and specific activities of various 

spongy NPs and commercial Pt black for the 1st sweep cycle and after multiple sweep cycles in 

in N2-saturated 1 M KOH electrolyte solutions containing (D) 1 M methanol, (E) 1 M ethanol, 

and (F) 1 M isopropanol.  

 

Figure 6.9 shows CV measurements of NSs toward various electrocalytic oxidation 

alcohols in alkaline environment and the corresponding MAs normalized to Pt mass and 

SAs. The NS nanoparticles exhibit larger MAs and SAs relative to commercial Pt black. 
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6.4 Conclusion 

This work opens up a new opportunity for precise control over the architectures of 

dealloyed porous nanostructures with ultrathin ligaments composed of Au-Cu alloy cores 

and Au-Pt alloy shells by using bimetallic alloy as sacrificial templates though coupling 

galvanic replacement reaction with percolation dealloying. The fine structures of the 

ligaments including thickness and composition could be precisely controlled by tuning 

the rate of Cu leaching relative with that of galvanic replacement. It is demonstrated the 

Au-Pt shells could inhibit the further Cu leaching and stabilize the structures of spongy 

nanoparticles meanwhile during the reaction, which allow us to well maintain the 

superior catalytic activities over much longer periods or multiple cycles toward alcohol 

oxidation reactions in both acidic and alkaline environments relative to the commercial Pt 

black. 

6.5 References 

(1) González, E.; Arbiol, J.; Puntes, V. F., Science 2011, 334, 1377. 

(2) Sun, Y.; Xia, Y., Science 2002, 298, 2176. 

(3) Cobley, C. M.; Xia, Y., Materials science & engineering. R, Reports : a review 

journal 2010, 70, 44. 

(4) Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y., Adv Mater 2013, 25, 6313. 

(5) Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y., Accounts 

Chem Res 2008, 41, 1587. 

(6) Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z.-Y.; Xia, Y., Nano Lett 2005, 5, 

2058. 

(7) Cho, E. C.; Camargo, P. H. C.; Xia, Y., Adv Mater 2010, 22, 744. 



www.manaraa.com

172 
 

(8) Sun, Y.; Wiley, B.; Li, Z.-Y.; Xia, Y., J Am Chem Soc 2004, 126, 9399. 

(9) Hong, S.; Acapulco, J. A. I.; Jang, H. Y.; Park, S., Chem Mater 2014, 26, 3618. 

(10) Jing, H.; Wang, H., Chem Mater 2015, 27, 2172. 

(11) Hong, X.; Wang, D.; Cai, S.; Rong, H.; Li, Y., J Am Chem Soc 2012, 134, 18165. 

(12) McEachran, M.; Keogh, D.; Pietrobon, B.; Cathcart, N.; Gourevich, I.; Coombs, N.; 

Kitaev, V., J Am Chem Soc 2011, 133, 8066. 

(13) Yan, Y.; Du, J. S.; Gilroy, K. D.; Yang, D.; Xia, Y.; Zhang, H., Adv Mater 2017, 29, 

1605997. 

(14) Ferrando, R.; Jellinek, J.; Johnston, R. L., Chem Rev 2008, 108, 845. 

(15) Weiner, R. G.; Smith, A. F.; Skrabalak, S. E., Chem Commun 2015, 51, 8872. 

(16) Ruditskiy, A.; Vara, M.; Huang, H.; Xia, Y., Chem Mater 2017, 29, 5394. 

(17) Zheng, Y.; Zeng, J.; Ruditskiy, A.; Liu, M.; Xia, Y., Chem Mater 2014, 26, 22. 

(18) Wen, T.; Zhang, H.; Tang, X.; Chu, W.; Liu, W.; Ji, Y.; Hu, Z.; Hou, S.; Hu, X.; Wu, 

X., J Phys Chem C 2013, 117, 25769. 

(19) Zhang, H.; Xia, X.; Li, W.; Zeng, J.; Dai, Y.; Yang, D.; Xia, Y., Angew Chem Int Ed 

2010, 49, 5296. 

(20) Tsung, C.-K.; Kou, X.; Shi, Q.; Zhang, J.; Yeung, M. H.; Wang, J.; Stucky, G. D., J 

Am Chem Soc 2006, 128, 5352. 

(21) Luo, J.; Maye, M. M.; Petkov, V.; Kariuki, N. N.; Wang, L.; Njoki, P.; Mott, D.; Lin, 

Y.; Zhong, C.-J., Chem Mater 2005, 17, 3086. 

(22) Zhou, S.; Jackson, G. S.; Eichhorn, B., Adv Funct Mater 2007, 17, 3099. 

(23) Kim, M.-J.; Na, H.-J.; Lee, K. C.; Yoo, E. A.; Lee, M., J Mater Chem 2003, 13, 

1789. 



www.manaraa.com

173 
 

(24) Zhang, J.; Liu, P.; Ma, H.; Ding, Y., J Phys Chem C 2007, 111, 10382. 

(25) Snyder, J.; Asanithi, P.; Dalton, A. B.; Erlebacher, J., Adv Mater 2008, 20, 4883. 

(26) Seebauer, E. G.; Allen, C. E., Prog Surf Sci 1995, 49, 265. 

(27) Brenner, A. J.; Harris, E. D., Anal Biochem 1995, 226, 80. 

(28) Lee, E. P.; Peng, Z.; Cate, D. M.; Yang, H.; Campbell, C. T.; Xia, Y., J Am Chem 

Soc 2007, 129, 10634. 

(29) Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, 

Y.; Tsung, C.-K., ACS Nano 2014, 8, 7239. 

(30) Guo, S.; Zhang, S.; Sun, X.; Sun, S., J Am Chem Soc 2011, 133, 15354. 



www.manaraa.com

174 
 

CHAPTER 7 

STRUCTURAL EVOLUTION OF AU-CU BIMETALLIC 

NANOPARTICLES THROUGH COUPLING GALVANIC 

REPLACEMENT WITH CODEPOSITION
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7.1 Introduction 

Nanoscale galvanic replacement provides a synthetically powerful approach for 

transformation of solid monometallic nanoparticles into more complex multimetallic 

nanostructures with hollow interiors.
1,2

 Over the past decade, remarkable progress has 

been made for fabrication of a series of sophisticate multimetallic hollow nanostructures 

through galvanic replacement reactions, and Ag-based bimetallic or trimetallic hollow 

nanoparticles with tunable structures and properties in particular have attracted intensive 

interesting by using Ag nanoparticles as sacrificial templates under appropriate 

conditions.
3-6

  It has shown that the starting templates have profound impacts on the 

architectures, compositions, and crystallinity of the resulting hollow nanoparticles.
7,8

 It 

has been recently found that a variety of nanostructures with increasingly sophisticated 

interior and surface architectures could be achieved by a modified galvanic replacement 

combination with sequentially deposited templates,
9-11

 the Kirkendall effects,
2
 or 

combined co-reduction and corrosion,
12,13

 which provide new opportunities for us to 

further fine-tune the architectures and compositions of the resultant hollow products and 

eventually optimize their chemical/physical properties. In the past few years, various 

fantastic Ag-based hollow nanostructures including Ag-Au, Ag-Pd, and Ag-Pt, could be 

controllably fabricated through galvanic replacements.
5,14-17

 Pt-containing alloy 

nanoparticles with hollow interiors and open surface structures, are of particular interest 

for high-performance nanocatalysis due to the anticipated enhancements toward the 

catalytic activity as a consequence their of high surface-to-volume ratio, and fine tailored 

structures with excellent surface accessibility and high densities of catalytically active 

sites.
18-21

 However, direct galvanic replacement offers rather poor control over the 
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geometries of Pt-based bimetallic hollow nanostructures because of the poor miscibility 

of Pt with other precious system like Ag-Pt, or Au-Pt binary systems, the Pt-based hollow 

nanostructures obtained through galvanic replacement typically exhibit poor morphology 

with bumpy and polycrystalline heterostructured walls.
18,22

 It is thus highly desirable to 

explore appropriate method by alternating template materials and/or modifications to the 

existing approaches to target the synthesis of hollow Pt nanostructures with fine-tuned 

architectures and compositions. Here we show that coupling codeposition with the 

galvanic replacement between Au-Cu bimetallic nanoparticles and H2PtCl6 in polyol 

allows us to fine tailor the geometries of the Au-Cu-Pt trimetallic hollow nanostructures 

with increased architectural complexity and thus greatly enhances our capabilities to 

optimize the catalytic performance of Pt-based hollow nanostructures. 

7.2 Experimental Section 

Materials Polyvinylpyrrolidone (PVP, average MW 58 000), chloroauric acid 

(HAuCl4·4H2O), copper nitrate hydrate (Cu(NO3)2·3H2O), ethylene glycol (EG), 

diethylene glycol (DEG), and tetraethylene glycol (TEG) were purchased from Alfa 

Aesar. Hydrazine solution (N2H4·3H2O 35 wt %), sulfuric acid (H2SO4 98%), 

chloroplatinic acid hexahydrate (H2PtCl6·6H2O), trizma base (TB), and Nafion 

perfluorinated resion solution (5 wt%) were purchased from Sigma-Aldrich. Trisodium 

citrate dehydrate (Na3C6H5O7·2H2O), sodium hydroxide (NaOH), and potassium 

hydroxide (KOH) was purchased from Fisher Scientific. All reagents were used as 

received without further purification. Ultrapure Milli-Q water with a resistivity of 18.2 

MΩ (Millipore) was used for all the experiments.  

Synthesis of Au-Cu Alloy NPs  Quasi-spherical Au NPs with an average diameter of 
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48.2 nm were synthesized using a previously reported seed-mediated growth method. 

Colloidal Au seeds with an average size of 17 nm were first synthesized by reducing 

chloroauric acid with citrate. Briefly, 0.5 mL of 25 mM HAuCl4 aqueous solution were 

added into 48 mL of boiling water under magnetic stir, followed by further reflux for 10 

minutes. Subsequently, 1.5 mL of 1 wt % trisodium citrate aqueous solution was rapidly 

injected into the refluxing reactant solution. The reaction solution was further refluxed 

for 30 minutes under magnetic stir, and then cooled to room temperature for further use. 

To synthesize ~ 48 nm quasi-spherical Au NPs, 8 mL of 0.1 M TB aqueous solution were 

added into 185 mL of boiling water. After being gently stirred for 10 minutes, 4 mL of 

the as-synthesized colloidal Au seeds and 3 mL of 25 mM HAuCl4 solution were 

successively added to the TB solution, followed by further reflux for 30 minutes under 

magnetic stir. The total volume of the final reaction solution was 200 mL. The Au quasi-

spherical NPs were subsequently separated from the reaction solution by centrifugation 

(3500 rpm, 10 min) and redispersion in 4 mL water for further use. 

Then 1.0 mL of Au QSNPs was introduced into 240 mL of 2 wt% PVP aqueous 

solution. 0.73 mL of 0.1 M Cu(NO3)2 was subsequently added. The reaction mixture was 

transferred into an ice bath, and then 0.58 mL of 5 M NaOH and 0.26 mL of N2H4·3H2O 

solution were added in successive under magnetic stir. The solutions were kept stirring 

for 15 min, and the obtained Au@Cu2O core-shell nanoparticles were separated from the 

reaction solution by centrifugation (3000 rpm, 10 min) washed with ethanol and 

redispersed in 3.0 mL ethanol. 

Au-Cu alloy nanoparticles were prepared through a polyol-assisted growth method. 

Typically, 1.0 mL of Au@Cu2O core-shell NPs was added into 10.0 mL TEG containing 
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0.1 g PVP. Au-Cu alloy nanoparticles were obtained by heating the mixture at 300 
o
C for 

10 min. The obtained nanoparticles were washed with ethanol five times, and finally 

redispersed in 2.0 mL of ethanol. 

Galvanic Replacement of Au-Cu Alloy NPs with H2PtCl6 in Polyol In a typical 

-Cu alloy colloidal NPs were added into 8.3 

mL polyol (EG, DEG, or TEG) in a small glass vial. Then 1.66 mL of 5 mM H2PtCl6 

polyol solution was subsequently added. The mixture was kept in an oil bath at 130 
0
C 

under magnetic stirring for 30 min. The resulting NPs were separated by centrifugation 

and washed with ethanol five times and dispersed into 125 μL water for further 

characterizations and electrochemical measurements. 

Structural Characterizations of NPs The morphologies and structures of the NPs 

were characterized by transmission electron microscopy (TEM) using a Hitachi H-8000 

transmission electron microscope, which was operated at an accelerating voltage of 200 

kV. All samples for TEM measurements were dispersed in ethanol and drop-dried on 200 

mesh carbon-coated-Ni grids (Electron Microscopy Science Inc.). The structures and 

compositions of the NPs were also characterized Energy Dispersive Spectroscopy (EDS) 

measurements using a Zeiss Ultraplus thermal field emission scanning electron 

microscope. The samples for SEM and EDS measurements were dispersed in ethanol and 

drop-dried on silicon wafers. The size distribution histograms were obtained from more 

than 100 NPs for each sample. Powder X-ray diffraction (PXRD) patterns were record on 

a SAXSLab Ganesha at the South Carolina SAXS Collaborative (Cu Kα = 1.5406 Å). 

XPS measurements were carried out using a Krato AXIS Ultra DLD XPS system 

equipped with a monochromatic Al Kα source. The samples for XPS measurements were 
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all freshly prepared and dried in vacuum before being loaded into the XPS chambers.  

Electrochemical Measurements All the electrochemical measurements were 

performed using a CHI 660E workstation (CH Instruments, Austin, Texas) at room 

temperature with a three-electrode system composed of a Pt wire as the auxiliary, a 

saturated calomel electrode (SCE) as the reference, and a glassy carbon electrode (GCE, 

3 mm diameter) as the working electrode. Typically, the GCE was polished with 0.3 mm 

alumina slurry and followed by washing with water and ethanol before use. 4.0 μL of the 

synthesized Au-Cu-Pt colloidal NPs was dropped and air-dried on the pretreated GCEs at 

room temperature, and then 2 μL of Nafion solution (0.2 wt%) was dropped to hold the 

NPs. The electrochemically active surface area (ECSAs) were determined by integrating 

the hydrogen desorption charge on the CV at room temperature in N2-saturated 0.5 M 

H2SO4 solution at a potential sweep rate of 50 mV s
-1

. The polarization trace was 

normalized against the Pt mass of the porous NPs loaded on each electrode. To evaluate 

the electrocatalytic activities of the Au-Cu-Pt trimetallic porous NPs toward formic acid 

oxidation, cyclic voltammetry (CV) measurements were performed in a N2-saturated 0.5 

M H2SO4 electrolyte containing 1.0 M formic acid at a potential sweep rate of 50 mV s
-1

. 

To assess the electrocatalytic durability of the Au-Cu-Pt trimetallic porous NPs, multiple 

CV cycles were carried out in 1.0 M formic acid in the presence of 0.5 M H2SO4 

electrolyte. The linear sweep voltammetry (LSV) of the Au-Cu-Pt trimetallic porous NPs 

toward hydrogen evolution was carried out in 0.5 M H2SO4 (pH 0.3) which was bubbled 

with N2 gas for 20 min before use and continuously bubbled during the tests at a scan rate 

of 50 mV/s. 
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7.3 Results and Discussions 

Operation of galvanic replacement in a reducing atmosphere allows us to manipulate the 

dealloying and coreduction processes, which have a profound impact on the structural 

evolution of the sacrificial nanoparticles. In this work, we demonstrate the use of polyol 

as a solvent as well as a reducing agent during the galvanic replacement of AuCu3 alloy 

with H2PtCl6 to fine-tailor structural and compositional evolutions of Au-Cu binary 

nanoparticles by manipulating the direct Pt deposition rate versus galvanic replacement 

rate. In a typical synthesis, the AuCu3 alloy transformed into hollow nanostructures 

through galvanic replacement by addition of H2PtCl6 solution in polyol and a drastically 

different architectural transformation process was observed on the final Au-Cu-Pt 

trimetallic product in different solvents. We used transmission electron microscopy 

(TEM), energy-dispersive spectroscopy (EDS), powder X-ray diffraction (PXRD), 

inductively coupled plasma mass spectrometry (ICP-MS), and X-ray photoelectron 

spectroscopy (XPS) to characterize the structure, composition, and morphology of the 

final products. As shown in Figure 7.1A, spongy-like nanoparticles with ultrathin 

ligament (denoted as S1) were obtained when we carried out the galvanic replacement 

reaction in EG at 130 °C for 30 min. While when DEG was used as solvent, AuCu3 alloy 

nanoparticles transformed into nanospongies with small Pt dots attaching on the ligament 

surface (Figure 7.1B) due to a synergistic effect between galvanic replacement reaction 

and Pt deposition as a consequence of a mild reducing capability of DEG under the 

identical reaction conditions (denoted as S2). Interestingly, when the reaction solvent was 

switched to TEG, which was found to significantly promote both the hollowing and 

deposition processes during the reaction, the hollow nanoshell structures with clear size 
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expansion were formed (denoted as S3) and the TEM image clearly shows that the 

nanoshells were essentially composed of small grainy Pt nanocrystals and were thus 

highly porous in nature (Figure 7.1C). The drastic differences in structural transformation 

in various polyol solvent probably result from the different reducing abilities that have 

great effect on the Pt deposition rate under the same reaction temperature. Lower 

deposition rates accompanied with GRR led to spongy structures with uniform and 

smooth nanoligament in EG, while the faster rates resulted in more grainy and rougher 

nanoshells, probably as a result of increased direct Pt deposition relative to galvanic 

replacement and corresponding corrosion of the template in TEG. PXRD patterns 

displayed in Figure 7.1D further verify the structures of hollow nanoparticles. At the 

same time, the compositions of the hollow nanoparticles qualitatively detected by EDX 

demonstrated the highest Pt content in nanoshells (S3) while the lowest amount in spongy 

nanoparticles formed in EG (S1), which provide further evidence to support the 

significantly accelerated Pt deposition rate by TEG. PXRD results further confirms the 

spongy nanoparticles composed of nanoligaments which possess a cable structure with 

Au-Cu cores and Au-Pt alloy shells, the significant broadening the diffraction peaks 

indicate their thin ligaments as well as small pore sizes (Figure 7.1D). While for the 

hollow particles S2 and S3 obtained in DEG and TEG, besides Au-Cu alloy features, 

strong and broadening diffractions were detected, which could be contributed by Au-Pt 

alloy phase and pure Pt as well (Figure 7.1D).  
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Figure 7.1. Structure and composition of Au-Cu-Pt trimetallic hollow NPs. TEM images of 

Au-Cu-Pt trimetallic spongy NPs synthesized through galvanic replacement of Au-Cu alloy NPs 

with H2PtCl6 in various polyol solutions at 130 
0
C. (A) EG, S1; (B) DEG, S2; (C) TEG, S3. (D) 

XRD patterns of Au-Cu-Pt trimetallic spongy NPs synthesized through galvanic replacement of 

Au-Cu alloy NPs with H2PtCl6 in polyol solutions. The standard XRD patterns of bulk Au, Cu, Pt, 

and AuCu3 alloy are also included. (E) CV curves of various spongy NPs in 0.5 M H2SO4 at a 

potential sweep rate of 50 mV s
−1

. The currents were normalized against the Pt mass loaded on 

each electrode. (F) ECSA of various spongy NPs estimated based on the hydrogen desorption 

peak area.  

 

We also used cyclic voltammetry (CV) as an electrochemical characterization tool to 

analyze surface atomic structures of various hollow nanoparticle and estimate the specific 

active surface areas (Figure 7.1E). The peaks at 0.3-0.6 V (vs. SCE) and 0.8-1.3 V (vs. 

SCE) originate from oxidation of surface Pt and Au atoms and the corresponding 

reductions of the oxide layers formed during anodic scan, respectively, indicating the 

exposure of Pt and Au on the surfaces. The peaks appearing in the range from -0.23 to 

0.15 V (vs. SCE) are attributed to hydrogen underpotential formation-stripping and we 

chose the hydrogen desorption peaks to estimate the electrochemically active surface area 
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(ECSA) of the various hollow nanoparticles by assuming the charge density passed 

during the hydrogen adsorption was 210 μC/cm
2
 for a flat Pt surface.

23
 The hollow 

nanoparticles show comparable ECSAs with commercial Pt/C, which are calculated to be 

465.3, 535.0, 664.9, and 649.7 cm
2
/mg for S1, S2, S3, and Pt/C, respectively (Figure 

7.1F). 

 

Figure 7.2. XPS of (A) Au 4f, (B) Pt 4f, and (C) Cu2p regions of S1 (green curves), S2 (blue 

curves), and S3 (red curves). The vertical dash lines indicate the peak positions of standard bulk 

Au, Pt, and Cu. 

 

We also employed XPS to characterize the surface structures and near surface 

compositions of various hollow nanoparticles (Figure 7.2). The of Pt 4f, Au 4f and Cu 2p 

regions gradually shifted to lower binding energies for the spongy nanoparticles obtained 

in EG, as compared with the corresponding pure bulk metals, which probably resulted 

from the formation of the Au-Pt alloy 
24

  that modified the charge transfer between Au 

and Pt,
25,26

 while slightly downshifted Pt 4f of Pt decorated spongy nanoparticles S2 and 



www.manaraa.com

184 
 

hollow nanoshells S3 could be ascribed to the formation of pure metallic Pt on the 

particle surface and the binding energies shift was mainly caused by lattice strain existing 

on the Pt nanoislands. At the same time, the near surface compositions quantified by XPS 

are dramatically different with the bulk compositions detected by EDS. The higher 

surface Pt/Au ratios calculated by XPS of various hollow nanoparticles further verified 

their Pt-rich surfaces. The existence of Au-Pt or Pt overlayers apparently contributed to 

the stabilization of the hollow structure due to a much slower surface diffusion rate of Pt 

relative with Au.
27

  

We quantitatively compared the electrocatalytic activities of the spongy nanoparticles, 

Pt-decorated nanospongies, and hollow nanoshells using the room temperature 

electrocatalytic formic acid oxidation reaction (FOR) in an acidic aqueous environment 

as a model reaction. As shown in Figure 7.3A, the naked glassy carbon electrode (GCE) 

exhibited catalytically inert toward FOR, while the obtained hollow nanostructures 

showed superior electrocatalytic activities and even more active relative with the 

commercial Pt/C catalysts. A second oxidation peak emerged during the cathodic sweeps 

originate from the further oxidation of surface-adsorbed carbonaceous species that were 

not completely oxidized during the previous anodic scans. The spongy nanoparticles with 

Au-Pt alloy skin in particular demonstrated the higher mass activity and specific activity 

than Pt-decorated nanospongies and nanoshells (Figure 7.3B). To assess the 

electrocatalytic stability of the obtained hollow nanoparticles, chronoamperometry (CA) 

measurements were carried out at the oxidation peak potential (0.6 V, vs SCE). As shown 

in Figure 7.3C, the oxidation currents underwent a fast decay in the first few seconds 

followed by a much slower decay over minutes until reaching a steady-state plateau. The 
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fast decay was ascribed to the development of the electrochemical double-layer after a 

potential bias was applied on the samples until reaching the equilibrium after a few 

seconds. The slower current decay was probably due to the accumulation of incomplete 

oxidation products on the particle surfaces which greatly impacted the accessible 

reactants during the reactions.   

 

Figure 7.3. Electrocatalytic performance of trimetallic hollow NPs. (A) CV curves of formic 

acid oxidation on naked glassy carbon electrode (GCE), commercial Pt/C, and various porous 

NPs in 1.0 M formic acid and 0.5 M H2SO4 at a potential sweep rate of 50 mV s
-1

. The samples 

labeled as S1, S2, and S3 correspond to the samples obtained through galvanic replacement of 

AuCu3 alloy NPs by H2PtCl6 in EG, DEG, and TEG at 130 
0
C for 30 min, respectively. (B) MAs 

and SAs of Pt/C and various porous NPs. (C) CA curves collected on Pt/C and various porous 

NPs for formic acid oxidation reaction at 0.6 V (vs SCE). All CA measurements were carried out 

in solutions containing in 1.0 M formic acid and 0.5 M H2SO4 deoxygenated with N2. (D) 

Polarization curves of Pt/C and various porous NPs toward hydrogen evolution reaction (HER) 

with current densities normalized to GSA, and (E) the corresponding Tafel plots. (F) Polarization 

curves of Pt/C and various porous NPs with current densities normalized to ECSA. 
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Figure 7.4. CV curves of formic acid oxidation on various porous NPs in 1.0 M formic acid and 

0.5 M H2SO4 at a potential sweep rate of 50 mV s
-1

 after CA measurements and multiple cycles 

(S1, A and D; S2, B and E; S3, C and F). 

 

We also investigate the hydrogen evolution reaction (HER) performance of various 

hollow nanoparticles with a three-electrode setup in 0.5 M H2SO4. Figure 7.3D and 7.3E 

shows HER polarization curves normalized against geometric surface area of the glassy 

carbon electrode (GSA) and corresponding Tafel slopes of the as-prepared samples and 

the commercial Pt/C catalysts as well. The hollow nanoparticles demonstrate comparable 

overpotentials (~20 mV versus RHE) to generate a current density of 10 mA/cm
2
 with 

that of commercial Pt/C catalyst (15 mV versus RHE). The corresponding Tafel slopes 

are 126, 320, 330, and 163 mV/dec for samples S1, S2, S3, and Pt/C catalyst respectively. 

The lowest Tafel slope of spongy nanoparticles S1 indicated its best HER performance 

compared with other samples and commercial Pt/C catalyst. Figure 7.3F shows the 

polarization curves of different samples with current densities normalized to ECSA. The 

HER current density of spongy nanoparticles at an overpotential of 19 mV is 0.99 mA 
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cm
-2

, which is higher than that of Pt/C commercial catalyst (0.49 mA cm
-2

). 

 
 
Figure 7.5. Polarization curves of (A) spongy NPs, (B) Pt-decorated nanospongies, and (C) 

nanoshells toward HER with current densities normalized to GSA before and after multiple CV 

cycles.  

 

The catalytic performances of the various samples for oxidation of formic acid were 

also evaluated after CA measurements and multiple cycles in acidic electrolyte, as shown 

in Figure 7.4. No obvious activity degenerations were detected, indicating the robust 

properties of various hollow structures during reactions. Moreover, we also investigated 

their catalytic activities for HER after multiple cycles. All the prepared hollow structure 

nanoparticles exhibit no obvious loss of activity after 1000 CV sweeps between 50 mV to 

-200 mV vs RHE at a scan rate of 100 mV s
-1

. Interestingly, the overpotential of various 

hollow nanostructures even slightly decreased to generate a current density of 10 mA cm
-

2
 after 1000 cycles relative with the corresponding initial overpotentials, suggesting their 

high stability under acidic conditions (Figure 7.5). In addition, the morphology and 

structure of the prepared hollow nanoparticles are well-retained after cycling for 1000 

cycles. 
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7.4 Conclusion 

In this work, we demonstrate that architecture significantly hollow nanoparticles 

including spongy-like nanoparticles, Pt-decorated nanospongies, and nanoshells particles 

could be controllably fabricated by maneuvering the relative reaction rate between the 

galvanic replacement and the reduction reaction in different polyols that served as both 

reaction solvent and reducing agent under the same conditions. The catalytic 

performances of various Pt-based hollow nanostructures were evaluated by choosing 

electrochemical oxidation of formic acid and hydrogen evolution in acidic environments 

as model reactions. It is found that the spongy-like nanoparticles with ultrathin 

nanligaments comprising Au-Cu alloy cores and Au-Pt shells exhibit superior catalytic 

activities compared with commercial Pt/C catalyst.  
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CHAPTER 8 

OVERCOMING THE INTERFACIAL LATTICE MISMATCH: 

GEOMETRY CONTROL OF GOLD-NICKEL BIMETALLIC 

HETERONANOSTRUCTURES 
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8.1 Introduction 

Heteroepitaxial overgrowth of a secondary metal on a morphology-controlled metallic 

nanocrystal seed provides a unique pathway to fine-tailor the geometries and thereby 

fine-tune the properties of bimetallic heteronanostructures.
1-6

 The degree of lattice 

mismatch between the two constituent metals has been identified as a key factor dictating 

the structural evolution of a large library of geometrically distinct bimetallic 

heteronanostructures during seed-mediated heteroepitaxial overgrowth.
7-21

 For metals 

possessing similar crystalline structures, interfacial heteroepitaxial growth requires 

moderate lattice mismatch typically within 5%,
1,7,8,22

 whereas for metal pairs with larger 

lattice mismatches or dissimilar crystalline structures, discrete islands or polycrystalline 

dendritic shells normally form on the seed surfaces due to lack of epitaxial relationships 

between the two constituent metals.
8,22-27

 Although such lattice mismatch limitation sets 

up a stringent criterion for interfacial heteroepitaxy, recent advances in seed-mediated 

colloidal syntheses have further expanded the heteroepitaxial growth to bimetallic 

nanocrystal systems with lattice mismatches beyond 5%, such as Au-Rh (7.0%),
14

 Pd-Cu 

(7.1%),
28

 Au-Cu (11.4%),
29

 and Au-Ni (13.6%).
30-32

 Au-Ni bimetallic nanocrystals 

constitute a particularly interesting model system for investigating nanoscale 

heteroepitaxy in lattice-mismatched systems. While colloidal Au-Ni bimetallic 

nanoparticles have been synthesized through seed-mediated nonepitaxial growth
33-35

 or 

one-pot coreduction reactions,
36-38

 expitaxial growth of Ni seeded by single-crystalline 

polyhedral Au nanocrystals enclosed by well-defined crystallographic facets enables 

structural control of bimetallic nanocrystals at a remarkably higher level of precision and 

versatility.
30,31
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However, it still remains challenging to epitaxially grow conformal Ni shells with 

fine-controlled thicknesses on multitwinned (quasi-) spherical Au cores whose surfaces 

are highly curved and enclosed by a myriad of different facets. In addition to the naturally 

adopted face-centered cubic (fcc) structures, metallic Ni may also crystallize into the 

hexagonal close-packed (hcp) phase under some specific conditions.
39-41

 Previously 

reported Au@Ni core-shell nanoparticles synthesized by seed-mediated expitaxial growth, 

nevertheless, are exclusively composed of fcc Au cores and fcc Ni shells.
30-32

 It has been 

recently reported that some thermodynamically unexpected metastable polymorphic 

crystalline phases may form via seed-mediated heteroepitaxial growth at specifically 

tailored interfaces.
42-45

 For example, Ru, which typically exists in hcp phase, adopts an 

unconventional fcc structure when expitaxially deposited on fcc Pd nanocrystal seeds.
44,45

 

Whether hcp Ni can be epitaxially deposited onto a fcc Au seed to form conformal core-

shell nanostructures retaining certain types of structural correlations between the core and 

the shell is still a fundamentally intriguing open question. A (quasi-) spherical 

nanocrystal with a conformal but lattice-mismatched core-shell geometry constitutes a 

metastable heterostructure. How to break the symmetry of a core-shell nanoparticle to 

form thermodynamically more stable heteronanostructures, such as asymmetric 

heterodimers, remains largely unexplored.  

Here we demonstrate that both fcc and hcp Ni can be epitaxially grown on 

multitwinned quasi-spherical Au nanocrystals to form conformal core-shell nanocrystals 

that faithfully inherit the key crystalline characteristics of their parental seeds. In addition, 

we have synthesized geometrically asymmetric Au@hcp Ni heteronanostructures with 

tunable Ni domain sizes under thermodynamically more favored nanocrystal growth 
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conditions, without forming alloy structures at the Au-Ni interfaces. Furthermore, we 

show that the Ni domains in the heteronanostructures exhibit markedly enhanced stability 

against etching compared to the monometallic Ni nanocrystals, primarily due to the 

synergy between the Ni and Au domains.  

8.2 Experimental Section 

Chemicals and Materials Chloroauric acid (HAuCl4·4H2O), polyvinylpyrrolidone (PVP, 

average MW 58 000), ethylene glycol (EG), and tetraethylene glycol (TEG) were 

purchased from Alfa Aesar. Nickel nitrate hexahydrate (Ni(NO3)2·6H2O), nickel chloride 

(NiCl2), trizma base (TB), sulfuric acid (H2SO4, 98%), and nafion perfluorinated resin 

solution (5 wt%) were purchased from Sigma-Aldrich. Sodium hydroxide (NaOH) and 

trisodium citrate dihydrate (Na3C6H5O7·2H2O) were purchased from Fisher Scientific. 

Ethanol was purchased from Decon Labs Inc. All reagents were used as received without 

further purification. Ultrapure water (18.2 MΩ resistivity, Milli-Q, Millipore) was used 

for all the experiments. 

Synthesis of Au Nanoparticles (NPs) Quasi-spherical Au NPs with an average 

diameter of 48.2 nm were synthesized using a previously reported seed-mediated growth 

method.
46

 Colloidal Au seeds with an average size of 17 nm were first synthesized by 

reducing chloroauric acid with citrate. Briefly, 0.5 mL of 25 mM HAuCl4 aqueous 

solution were added into 48 mL of boiling water under magnetic stir, followed by further 

reflux for 10 minutes. Subsequently, 1.5 mL of 1 wt % trisodium citrate aqueous solution 

was rapidly injected into the refluxing reactant solution. The reaction solution was further 

refluxed for 30 minutes under magnetic stir, and then cooled to room temperature for 

further use. 
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To synthesize ~ 48 nm quasi-spherical Au NPs, 8 mL of 0.1 M TB aqueous solution 

were added into 185 mL of boiling water. After being gently stirred for 10 minutes, 4 mL 

of the as-synthesized colloidal Au seeds and 3 mL of 25 mM HAuCl4 solution were 

successively added to the TB solution, followed by further reflux for 30 minutes under 

magnetic stir. The total volume of the final reaction solution was 200 mL. The Au quasi-

spherical NPs were subsequently separated from the reaction solution by centrifugation 

(3500 rpm, 10 min) and redispersion in 5 mL water for further use. 

Synthesis of Au@Ni Bimetallic Heteronanostructures Au@Ni bimetallic 

heteronanostructures were synthesized through seed-mediated growth of face-centered 

cubic (fcc) or hexagonal close-packed (hcp) Ni on Au quasi-spherical NPs in polyol 

solvents. To synthesize the Au@fcc Ni core-shell nanoparticles (CSNPs), 150 L of 

colloidal Au NPs (average diameter of 48.2 nm) were added into 20 mL EG containing 

0.05 g PVP, 0.2 mM Ni(NO3)2, and 14 mM NaOH. The reaction mixtures were kept at 

180 
o
C for 1 hour, and then cooled to room temperature. The resulting particles were 

washed with ethanol 5 times through centrifugation-redispersion cycles and finally 

redispersed in ethanol for further characterizations. By varying the concentration of 

Ni(NO3)2 while keeping the molar ratio of Ni(NO3)2:NaOH fixed at 1:70, the thickness of 

the fcc Ni shell on Au NP cores could be tuned. 

Au@hcp Ni CSNPs were synthesized at 300
 o

C in TEG. Briefly, 150 L of the quasi-

spherical Au NPs were added into in 20 mL TEG containing 0.05 g PVP and 0.2 mM 

Ni(NO3)2. The reaction mixtures were kept at 300 
o
C for 1 hour, and then cooled to room 

temperature. The resulting particles were washed with ethanol 5 times through 

centrifugation-redispersion cycles and finally redispersed in ethanol for further 
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characterizations. By varying the concentration of Ni(NO3)2 while keeping the other 

synthetic parameters unchanged, the thickness of the hcp Ni shell on Au NP cores could 

be tuned. 

Au@hcp Ni heterodimer nanoparticles (HDNPs) were synthesized by heating 20 mL 

TEG containing 150 L of the quasi-spherical Au NPs, 0.05 g PVP, and 0.2 mM NiCl2 at 

300 
o
C for 1 hour. The obtained particles were washed with ethanol 5 times through 

centrifugation-redispersion cycles, and finally redispersed in ethanol for further 

characterizations. By varying the concentration of NiCl2 while keeping the other synthetic 

parameters unchanged, the sizes of the Ni domains in the resulting HDNPs could be 

tuned. 

Au@hcp Ni multi-branched nanoparticles (MBNPs) were synthesized by heating 20 

mL TEG containing 0.05 g PVP, 0.2 mM NiCl2, and 1.4 mM NaOH under 300 
o
C for 1 

hour. The obtained particles were washed with ethanol 5 times through centrifugation-

redispersion cycles, and finally redispersed in ethanol for further characterizations.  

Synthesis of Monometallic fcc and hcp Ni NPs Monometallic Ni NPs were 

synthesized by reducing Ni(NO3)2 in polyols following the procedures described above 

without Au seeds. Briefly, fcc Ni NPs were synthesized by heating 20 mL EG containing 

0.05 g PVP, 0.5 mM Ni(NO3)2, and 35 mM NaOH at 180 
o
C for 1 hour. hcp Ni NPs were 

synthesized by heating 20 mL TEG containing 0.05 g PVP and 0.5 mM Ni(NO3)2 at 300 

o
C for 1 hour. The resulting particles were washed with ethanol 5 times through 

centrifugation-redispersion cycles, and finally redispersed in ethanol for further 

characterizations. 

Etching of Au@Ni Bimetallic Heteronanostructures and Monometallic Ni NPs 
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The chemical etching of the Au@Ni bimetallic heteronanostructures and monometallic 

Ni NPs was carried out by exposing the NPs to 1.0 mM H2SO4 at room temperature 

under ambient pressure for certain time periods. The resulting particles were separated 

from the etchant by centrifugation and finally redispersed in ethanol.  

Structural Characterizations The morphologies and structures of the NPs were 

characterized by transmission electron microscopy (TEM) using a Hitachi H-8000 

transmission electron microscope operated at an accelerating voltage of 200 kV. All 

samples for TEM measurements were dispersed in ethanol and drop-dried on 300 mesh 

Formvar/carbon-coated-Cu grids (Electron Microscopy Science Inc.). Scanning electron 

microscopy (SEM) imaging and energy dispersive spectroscopy (EDS) measurements 

were performed on NPs supported on silicon wafers using a Zeiss Ultraplus thermal field 

emission scanning electron microscope. The NP sizes were analyzed on the basis of TEM 

images using Nano Measurer analysis software (Department of Chemistry, Fudan 

University, China). High-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) imaging of Au@Ni heteronanostructures was carried out 

using a JEOL 2100F 200 kV FEGSTEM/TEM microscope equipped with a CEOS CS 

corrector on the illumination system. The samples for HAADF-STEM measurements 

were dispersed in ethanol and drop-dried on 400 mesh Cu grids with ultrathin carbon 

support film (Electron Microscopy Science Inc.). Powder X-ray diffraction (PXRD) 

patterns were record on a SAXSLab Ganesha at the South Carolina SAXS Collaborative 

(Cu Kα = 1.5406 Å). The optical extinction spectra were collected on colloidal NPs 

suspended in water at room temperature using a Beckman Coulter Du 640 

spectrophotometer. 
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Electrochemical Measurements Electrochemical measurements were performed 

using a CHI 660E workstation (CH Instruments, Austin, Texas) at room temperature with 

a three-electrode system composed of a Pt wire as the auxiliary, a saturated calomel 

electrode (SCE) as the reference, and a glassy carbon electrode (GCE, 3 mm diameter) as 

the working electrode. Typically, the GCE was polished with 0.3 µm alumina slurry, 

followed by washing with water and ethanol before use. Colloidal suspensions containing 

4 µg of fcc Ni NPs, hcp Ni NPs, Au@fcc Ni CSNPs, Au@hcp Ni CSNPs, Au@hcp Ni 

HDNPs, or Au@hcp Ni MBNPs were dropped and air-dried on the pretreated GCEs at 

room temperature, and then 2 μL of Nafion solution (0.2 wt %) was dropped to hold the 

NPs. The linear sweep voltammetry (LSV) of various NPs were measured in 1 mM 

H2SO4 electrolyte in the potential scan range from -0.4 V to 0.6 V (vs. SCE) at a sweep 

rate of 50 mV s
-1

. 

Cluster Expansion Calculations The Alloy Theoretic Automated Toolkit (ATAT)
 

[2,3]
 software package was used to predict the zero-temperature phase diagram of the Ni-

Au system. The ATAT code first invokes Density Functional Theory (DFT) code, in our 

case the Vienna Ab initio Simulation Package (VASP),
[4]

 to determine the energy of 

carefully selected ordered alloy structures. These DFT-computed energies are then used 

to determine the interaction parameters of the cluster expansion of an Ising-like 

Hamiltonian, from which the energies of other ordered and random alloys are determined 

according to the following equation:  

 

where, σ is a configuration of the alloy, S is the Ising spin variable which takes on values 

of   -1 or +1 depending on the site I occupied by an Ni or Au atom, J’s are the effective 
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cluster interaction (ECI) energies. The cluster expansion approach predicts Au and Ni to 

be immiscible, which is consistent with the experimental phase diagram. The energies of 

the pure materials, Ni and Au shown here are those calculated from the cluster expansion; 

the deviation of these values from zero is thus a measure of the uncertainty in the results 

of the calculations (approximately 0.015 eV/atom). 

8.3 Results and Discussions 

The geometry-controlled syntheses of Au-Ni bimetallic heteronanostructures were 

accomplished through kinetically maneuvered, Au nanocrystal-seeded reduction of Ni 

precursors in polyols, which played a unique dual role as both the solvent and the 

reducing agent
47

. We followed a previously reported protocol
46

 to synthesize the 

multitwinned Au nanocrystal seeds, which exhibited a highly uniform quasi-spherical 

morphology enclosed by highly curved surfaces with an average size of 48.2 + 2.8 nm. 

The reaction temperature, the polyol solvent, the Ni precursor, and the surface capping 

agent, which was polyvinylpyrrolidone (PVP) in this case, were all found to be crucial 

synthetic parameters determining the geometries of the resulting Au-Ni 

heteronanostructures as well as the crystalline phases of the Ni domains.  

As illustrated in Figure 8.1A, with Ni(NO3)2 serving as the Ni precursor, conformal 

Au@Ni core-shell nanoparticles (CSNPs) with fcc and hcp Ni shells can be selectively 

synthesized in NaOH-containing ethylene glycol (EG) at 180 
o 

C and in tetraethylene 

glycol (TEG) at 300 
o 

C, respectively. The powder X-ray diffraction (PXRD) patterns 

displayed in Figure 8.1B clearly showed that the as-synthesized Au-Ni bimetallic 

nanocrystals were composed of phase segregated fcc Au and fcc or hcp Ni without any 

detectable Au-Ni alloy phases, in line with the phase diagram of bulk Au-Ni and the 
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prediction by cluster expansion calculations. 

 

Figure 8.1. Au@fcc Ni and Au@hcp Ni CSNPs. (A) Schematic illustration of syntheses of 

Au@fcc Ni and Au@hcp Ni CSNPs in polyols. Au@fcc Ni CSNPs were synthesized in EG 

containing 0.2 mM Ni(NO3)2 and 2.5 g L
-1

 PVP and 14 mM NaOH at 180 
o
C for 1 h. Au@hcp Ni 

CSNPs were synthesized in TEG containing 0.2 mM Ni(NO3)2 and 2.5 g L
-1

 PVP at 300 
o
C for 1 

h. (B) PXRD patterns of Au@fcc Ni CSNPs and Au@hcp Ni CSNPs. The standard diffraction 

patterns for fcc Au (JCPDS no. 04-0784), fcc Ni (JCPDS no. 04-0850), and hcp Ni (JCPDS no. 

45-1027) are also shown for comparision. The PXRD patterns are offset for clarity. (C) TEM 

image, (D) SEM image, and (E) EDS elemental map of Au@fcc Ni CSNPs. (F) TEM image, (G) 

SEM image, and (H) EDS elemental map of Au@hcp Ni CSNPs.  

 

The conformal core-shell heterostructures were well-resolved based on the clear contrast 

between the core and the shell of each nanoparticle in the transmission electron 

microscopy (TEM) images (Figures 8.1C and 8.1F). The bimetallic nanocrystals were 

further characterized by energy dispersive spectroscopy (EDS), which allowed us to 

quantify the Au/Ni compositional stoichiometries based on the Au Mα and Ni Lα lines. 

Supporting Correlated scanning electron microscopy (SEM) imaging and EDS elemental 

mapping further confirmed the Au core-Ni shell heterostructure in each nanoparticle 
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(Figures 8.1D, 8.1E, 8.1G, and 8.1H). 

By varying the amount of Ni(NO3)2 precursor under otherwise identical reaction 

conditions, the thicknesses of both the fcc and hcp Ni shells could be fine-tuned in the 

range from ~ 3 nm up to ~ 16 nm while well-preserving the quasi-spherical conformal 

core-shell geometry. A series of Au@fcc Ni and Au@hcp Ni CSNPs with the same 

average core size but different average shell thicknesses were fully characterized by 

PXRD, TEM, and EDS. The Ni atomic percentages of the CSNPs quantified by EDS 

showed very good agreement with those calculated based on the average core and shell 

dimensions obtained from TEM. Synthesis of conformal core-shell nanoparticles with Ni 

shells thicker than ~ 16 nm, however, still remained challenging because further 

increasing the amount of Ni(NO3)2 precursor led to the growth of nanoscale surface 

protrusions, resulting in the formation of surface roughened Au@fcc Ni CSNPs and spiky 

multibranched Au@hcp Ni CSNPs, respectively. As schematically illustrated, the growth 

of Ni shells seeded by the quasi-sperhical Au nanocrystals can be best decribed as a 

nanoscale analog of the epitaxial thin film growth on a single crystal surface following 

the Stranski–Krastanov model, a hybrid layer-plus-island growth mechanism involving 

the transition from the layer-by-layer growth mode (Frank–van der Merwe growth) to 

island-based growth mode (Volmer–Weber growth) at a critical shell thickness.
48

 The 

onset thickness for such growth mode transition varies significantly among different 

materials systems, depending on the materials compositions, the crystalline structures, the 

curvature of the interfaces, and the conditions under which the epitaxial growth occurs. 

For the Au@Ni CSNPs synthesized under the current conditions, the transition from the 

layer-by-layer to the island-based growth mode was observed at a critical Ni shell 
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thickness around 16 nm.  

The crystalline phase of the Ni shells grown on the Au cores was essentially controlled 

by the reaction temperature. The formation of Au@fcc Ni CSNPs involved the seed-

mediated reduction of Ni(NO3)2 by EG at 180 
o
C, a temperature close to the boiling point 

of EG (197
o
C), at a NaOH/Ni(NO3)2 molar ratio of 70:1. The presence of NaOH provided 

an alkaline environment that kinetically boosted the the reduction of Ni(NO3)2 by EG, in 

line with previous observations reported by Tsuji and coworkers.
30

  Without NaOH, the 

reduction of Ni(NO3)2 by EG at 180 
o
C was kinetically sluggish with no observable Ni 

shell growth even after 12 hours. The formation of hcp Ni shells required a further 

elevated reaction temperature above ~ 270 
o
C. Therefore, TEG, a polyol with a boiling 

point around 314 
o
C, was used instead of EG for the synthesis of Au@hcp Ni CSNPs. At 

300 
o
C, the reduction of Ni(NO3)2 by TEG became kinetically much faster than at lower 

temperatures, resulting in rapid growth of hcp Ni shells on the Au cores even in the 

absence of NaOH. Adding NaOH into the reactant mixtures did not introduce any 

observable structural modifications to the resulting Au@hcp CSNPs. The Ni shells in the 

Au@fcc Ni CSNPs underwent a complete fcc-to-hcp phase transition upon thermal 

heating in TEG at 300 
o
C for 2 hours while the quasi-spherical conformal core-shell 

geometry was well-preserved with no observable interfacial alloying between Au and Ni. 

We also found that the polyol solvents exhibited sufficient reducing capabilities only 

when the reaction temperatures were close to their boiling points (within ~25 
o
C below 

the boiling points). When switching the solvent from EG to TEG, no Ni deposition was 

observed after keeping the reaction mixture containing Ni(NO3)2, PVP, and NaOH at 180 

o
C for 8 hours.  
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We used high-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) as a high-resolution imaging tool to resolve the the atomic-level 

structures at the Au-Ni interfaces of the CSNPs. Figure 8.2A shows the detailed structural 

information of an individual Au@fcc Ni CSNP with well-resolved lattice fringes of both 

Au (111) and Ni (111). Moiré patterns with parallel fringes were clearly observed at the 

regions where the Au core and Ni shell overlapped (Figure 8.2A-i), strongly indicating an 

epitaxial relationship between the fcc Au core and fcc Ni shell with lattice-mismatched 

(111) planes. The spacing of the Moiré fringes, D, was measured to be 1.52 nm, which 

was consistent with the D value of 1.49 nm calculated using the following equation  

,  

where dAu(111) and dNi(111) were the lattice spacings of Au (111) and Ni (111), respectively 

(dAu(111) = 0.2355 nm; dNi(111) = 0.2034 nm). The fast Fourier transform (FFT) patterns 

further confirmed the epitaxial relationship between the core and the shell with crystalline 

orientations aligned along the same zone axis. Figure 8.2B shows the HAADF-STEM 

images and FFT patterns of several regions of a Au@hcp Ni CSNP. Interestingly, the 

(001) plane of fcc Au core was observed to be aligned with the (011) plane of hcp Ni 

most likely due to the small mismatch between the lattice spacings of Ni (011) and Au 

(002) (dAu(002) = 0.20390 nm; dNi(011) = 0.20334 nm). Such unconventional orientational 

arrangement of hcp Ni shell with respect to the fcc Au core reveals that even for core and 

shell materials with different crystalline phases, it is still possible to establish a rigorous 

structural correlation between the core and the shell through interfacial heteroepitaxial 

growth by appropriately stacking crystalline planes with different Miller indices. 

dAu(111) ×dNi(111)

|dAu(111) - dNi(111)|
D = 
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Figure 8.2. Atomic-level structures of Au@fcc Ni and Au@hcp Ni CSNPs. (A) HAADF-

STEM image of an individual Au@fcc Ni CSNP. (A-x, x = i, ii) High-resolution HAADF-STEM 

images showing the atomic-level structures of regions i and ii in panel A. (A-x-a and A-x-b) FFT 

patterns of the regions labeled as a and b in panels A-x. (B) HAADF-STEM image of an 

individual Au@hcp Ni CSNP. (B-x, x = i, ii) High-resolution HAADF-STEM images showing 

the atomic-level structures of regions i and ii in panel B. (B-x-a and B-x-b) FFT patterns of the 

regions labeled as a and b in panels B-x.  

 

Besides the reaction temperature and the addition of NaOH, the kinetics of the seed-

mediated growth of Ni on Au could be further maneuvered by changing the Ni precursors.  

The reduction of Ni by polyol became significantly slower when switching the Ni 

precursor from Ni(NO3)2 to NiCl2,
49

 allowing the nanocrystals to evolve into 

thermodynamically more stable bimetallic nanostructures, such as asymmetric 

heterodimer nanoparticles (HDNPs). When using NiCl2 as the Ni precursor and EG as the 

solvent, no Ni reduction was observed after refluxing the reaction mixture in the presence 

of NaOH at the boiling point of EG even for 8 hours. In TEG, Ni reduction became 
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kinetically observable only when the reaction temperature was higher than ~ 250 
o
C.  

 

Figure 8.3. Au@hcp Ni HDNPs and MBNPs. (A) Schematic illustration of syntheses of 

Au@hcp Ni HDNPs and Au@hcp Ni MBNPs. Au@hcp Ni HDNPs and Au@hcp Ni MBNPs 

were synthesized in TEG containing 0.2 mM NiCl2 and 2.5 g L
-1

 PVP without and with 1.4 mM 

NaOH, respectively, at 300 
o
C for 1 h. (B) PXRD patterns of Au@hcp Ni HDNPs and Au@hcp 

Ni MBNPs. The standard diffraction patterns for fcc Au and hcp Ni are also included. The PXRD 

patterns are offset for clarity. (C) TEM image, (D) SEM image, and (E) EDS elemental map of 

Au@hcp Ni HDNPs. (F) TEM image, (G) SEM image, and (H) EDS elemental map of Au@hcp 

Ni MBNPs. 

 

As schematically illustrated in Figure 8.3A, using NiCl2 as Ni precursor and TEG as 

the solvent at a reaction temperature of 300 
o
C, the seed-mediated growth resulted in the 

formation of Au@Ni HDNPs in the absence of NaOH, whereas Au@Ni multibranched 

nanoparticles (MBNPs) with multiple Ni domains attached to each Au core were obtained 

in the presence of appropriate amount of NaOH (NaOH/NiCl2 molar ratio of 7:1). PXRD 

results showed that the Ni domains in both the HDNPs and MBNPs were composed of 

hcp Ni (Figure 8.3B). The bimetallic compositions were verified by EDS and the spatial 
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arrangements of the Au and Ni domains were thoroughly characterized by TEM, SEM, 

and EDS elemental mapping (Figures 8.3C-8.3H). By varying the amount of NiCl2 while 

keeping the other synthetic conditions the same, we were able to tune the hcp Ni domain 

sizes of the HDNPs. For MBNPs, as increasing amount of Ni was deposited on the Au 

core, the Ni domains started to merge into a continuous, flower-like shell structure.  

While fast nanocrystal growth allowed us to kinetically trap the conformal CSNPs, the 

asymmetric HDNPs represented a thermodynamically more stable structure formed under 

slow nanocrystal growth conditions. In this context, the MBNPs appeared to be a unique 

“metastable” geometry resulting from the intermediate nanocrystal growth kinetics that 

fell between the thermodynamically controlled and kinetically favored regimes. 

Increasing the NaOH/NiCl2 molar ratio from 7:1 to 70:1 futher accelerated the Ni growth, 

resulting in Au@hcp Ni CSNPs with a conformal core-shell geometry essentially 

identical to the ones synthesized using Ni(NO3)2 as the Ni precursor.  The nanocrystal 

growth kinetics could also be maneuvered through controlled surface passivation of the 

nanocrystals with PVP. While Au@hcp Ni HDNPs were synthesized in the presence of 

2.5 g mL
-1

 PVP, increasing the PVP concentration to 25.0 g mL
-1

 effectively slowed 

down the nanocrystal growth as a consequence of surface passivation, allowing us to 

obtain Au@hcp Ni MBNPs with nearly 100 % yield. 

We further investigated the stability of various Au@Ni bimetallic heterostructures 

against chemical and electrochemical etching. Starting with various Au@Ni bimetallic 

heteronanostructures with similar Ni atomic percentages, we systematically tracked the 

temporal evolution of the particle compositions using EDS during selective etching of Ni 

by H2SO4 at room temperature (Figure 8.4A). While the fcc Ni shells were completely 
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etched from the CSNPs upon exposure to 1 mM H2SO4 within 10 min, the etching of the 

hcp Ni shells occurred at a significantly slower rate, indicating that the hcp Ni shells in 

the CSNPs were more stable than their fcc counterparts. The etching rates of the hcp Ni 

domains in both HDNPs and MBNPs were found to be even slower than that of the hcp 

Ni shells in CSNPs, suggesting that HDNPs and MBNPs were structurally more stable 

than CSNPs. The relative stabilities of the Ni domains in various Au@Ni bimetallic 

heteronanostructures were also assessed by linear sweep voltammetry (LSV) 

measurements in 1 mM H2SO4 electrolyte (Figure 8.4B). The Au@hcp Ni CSNPs 

exhibited a higher critical potential for Ni dissolution than that of the Au@fcc Ni CSNPs, 

which was consistent with the chemical etching results. The LSV results also showed that 

the onset potentials for Ni dissolution from the bimetallic heteronanostructures were all 

positively shifted with respect to those of monometallic fcc and hcp Ni nanoparticles 

synthesized in polyols without Au seeds (see the PXRD patterns and TEM images of the 

monometallic Ni nanoparticles), strongly indicating that the synergy between the Ni and 

Au domains in the heteronanostructures significantly enhanced resistance of the Ni 

domains against oxidative etching, a phenomenon previously also observed in other 

bimetallic nanocrystal systems.
29,33,38

 Figures 8.4C-8.4F show the TEM images of various 

Au@Ni bimetallic heteronanostructures after exposure to 1 mM H2SO4 for 30 min. For 

Au@fcc Ni CSNPs, the Ni shells were completely etched with only the Au cores 

remained intact, while the hcp Ni in the Au@hcp Ni heteronanostructures was only 

partially etched to a certain extent, evolving into nanoporous Ni shells or domains 

attached to Au cores. The relative stability of hcp Ni with respect to fcc Ni was further 

confirmed by etching experiments performed on monometallic fcc and hcp Ni 
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nanoparticles. Upon exposure to 1 mM H2SO4 for 30 minutes, the monometallic hcp Ni 

nanoparticles exhibited a partially etched hollow architecture, whereas the monometallic 

fcc Ni nanoparticles were completely dissolved in the etching solution within 10 minutes.  

 

 

Figure 8.4. Compositional and structural evolution of Au@Ni heteronanostructures upon 

selective etching of Ni. (A) Temporal evolution of Ni/Au atomic ratio after exposure of various 

Au@Ni heteronanostructures to 1 mM H2SO4. The error bars represent the standard deviations of 

3 samples. (B) LSV of Au@Ni heteronanostructures and monometallic fcc Ni and hcp Ni NPs in 

1 mM H2SO4 electrolyte at a potential sweep rate of 50 mV s
−1

. TEM images of the etched NPs 

obtained after exposure of (C) Au@fcc Ni CSNPs, (D) Au@hcp Ni CSNPs, (E) Au@hcp Ni 

HDNPs, and (F) Au@hcp Ni MBNPs to 1 mM H2SO4 for 30 min.  

 

In summary, controlled epitaxial growth of fcc and hcp Ni on quasi-spherical fcc Au 

nanocrystals in polyol solvents enables precise geometry control of various Au-Ni 

bimetallic heteronanostructures that combine plasmonic Au and magentic Ni in one 

nanoscale entity. The plasmon resonances of Au nanoparticles are significantly damped 

upon surface deposition of Ni, causing spectral red-shift of the plasmon resonance 

frequency as well as weakening and broadening of the plasmon band in the optical 

extinction spectra, which is in line with previous observations.
[7a,9b] 

The presence of Au, 
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on the hand, may also introduce interesting modifications to the magnetic properties of Ni. 

As previously reported, the magnetic characteristics of Au-Ni bimetallic 

heteronanostructures are sensitively dependent upon the sizes, geometric arrangement, 

and crystalline phases of the Au and Ni domains.
[8a,9b]

  

8.4 Conclusion 

The key findings in this work provide an insightful knowledge framework guiding the 

rational design of versatile synthetic approaches that extend the nanoscale interfacial 

heteroepitaxy from lattice-matched to lattice-mismatched bimetallic nanocrystal systems, 

paving the way toward the rational construction of multimetallic heteronanostructures 

with further enhanced architectural complexity and compositional diversity. Deliberate 

geometry control of multimetallic heteronanostructures allows us to further fine-tailor the 

synergy between multiple constituent domains in one nanoparticle, thereby greatly 

enhancing our capabilities to fine-tune the optical, electronic, magnetic, and catalytic 

properties of the multimetallic nanocrystals for specific applications.  
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